
Task Allocation in Networks∗

Francis Bloch† Lilian Hartmann‡ Luca Paolo Merlino§

Dotan Persitz¶

November 30, 2024

Abstract

We study dynamic task allocation when there is a fixed bipartite network associating

workers to tasks. We analyze two approaches: centralized and decentralized. First, we

study the optimal policy of a planner whose objective is to minimize the expected time of

completion of all tasks. Second, we analyse a game played by workers who independently

choose their tasks and are rewarded each time they complete a task. We characterize

networks for which the planner’s and workers’ policies are simple. When policies are

simple the planner prefers the workers to start with the hardest tasks, whereas workers

always prefer to start with easier tasks. We show that the two policies only coincide

when the bipartite network satisfies a strong symmetry condition. Differential rewards

can be used to implement the planner’s optimal task allocation and we show that non-

contingent rewards, which are independent of the set of remaining tasks, can be used as

long as there is no task that a single agent can complete.

Keywords: Task allocation, Scheduling, Suitability constraints, Bipartite net-

works.

JEL Classification: D20, L20, K0.

∗For invaluable comments, we thank the participants in seminars in AMSE, Bar-Ilan Univer-
sity, 2023 Barcelona Summer Forum, BINOMA 2023 ...

†Paris School of Economics and Université Paris 1 Panthéon Sorbonne. Email:
francis.bloch@univ-paris1.fr.

‡Email: lilianhartmanndesnos@gmail.com.
§Université Libre de Bruxelles. Email: luca.paolo.merlino@ulb.be.
¶Coller School of Management, Tel Aviv University. Email: persitzd@post.tau.ac.il.

1

1 Introduction

The European Organization for Nuclear Research (CERN) is the operator of

the largest particle physics laboratory in the world. As of 2022, more than 12,000

scientists were affiliated with CERN. These scientists are organized in nine large

research teams, all using the Large Hadron Collider (LHC), the world’s largest

and most powerful particle collider. The nine research groups are collaborative

teams called “experiments” that are distinct in many characteristics (e.g., size)

and overlapping in their goals. Each experiment consists of different tasks that

require different set of skills and expertise. Di Stefano and Micheli (2022) study

the interaction between two of the experiments and write that “despite sharing

institutional linkages (through CERN), using the same key resource (LHC), and

having their headquarters physically co-located (in Geneva, Switzerland), each or-

ganization has a strong incentive to be the first to make any discovery to secure

recognition, research funds, and human resources” (p. 6).1

More generally, large projects in manufacturing, infrastructure, auditing or aca-

demic research can often be decomposed into many complementary tasks which

all need to be completed for the success of the project. Therefore, the allocation

of workers to tasks is a key problem faced by organizations responsible for such

projects. As a result, optimal task allocation policies have long been a subject of

interest in Operations Management and Economics.

In this paper, we consider a task allocation problem for a large project that

consists of multiple tasks, with no precedence order. The suitability of workers

to tasks is represented by an exogenous bipartite graph of workers and tasks. A

worker is connected to a task if she possesses the required skill to accomplish the

task on her own. Any worker with a given set of skills may accomplish several

tasks, and any task can be completed by several workers, possibly with different

skills. The project is completed whenever all tasks are accomplished.

1See https://home.cern/science/experiments on CERN’s website and Knorr-Cetina
(1995), Tuertscher, Garud and Kumaraswamy (2014) and Di Stefano and Micheli (2022) for
a detailed description of the experiments and the internal organization at CERN. In particular,
see Endnote 1 in Di Stefano and Micheli (2022) for the publication policy in the experiments.

2

The completion of any task is a stochastic Poisson process. Each worker com-

pletes a task in time that is distributed exponentially with some idiosyncratic

arrival rate parameter. If multiple workers are engaged with a task, it will be

completed when the first worker completes it. Therefore, the time of completion

of a task depends on the number of workers working simultaneously on the task.

If all workers are able to work on all the tasks, or if the mapping between

workers and tasks is bijective, the task allocation problem is trivial, as any al-

location results in the same expected completion time of the project. But the

feasibility constraints captured by the bipartite suitability network introduce a

new, dynamic, aspect to the task allocation problem. Once a task is completed,

the set of allocations of agents to the remaining tasks is given by a new, reduced,

bipartite suitability network. The current assignment of workers to tasks affects

the probability that any task is completed, hence the distribution over the bipar-

tite suitability networks in the next steps of the project. Therefore, assigning a

worker to work in the present on a certain task affects the distribution of workers

who will be able to work in the future on the remaining tasks. This dynamic effect

transforms the task allocation problem into a complex Markov Decision Problem.

We analyze the task allocation problem both in a centralized and decentralized

settings. In the centralized setting, a single planner allocates tasks to workers in

order to minimize expected completion time of the project. In the decentralized

setting every worker independently chooses which task to work on and is rewarded

every time she completes a task. We compute the optimal policy of the planner in

the centralized setting (the “planner’s problem”) and the Nash equilibrium in the

decentralized setting (the “worker’s game”).

Importantly, we show that both the computation of the optimal policy of the

planner and of the Markov Perfect Equilibrium strategies of the workers are com-

plex problems. They correspond to the computation of an optimal policy in a

recursive, finite-horizon Markov Decision Problem where the state space, which

is equal to the number of sub-networks after deletion of single nodes of a given

bipartite network, grows exponentially with the number of tasks. Faced with

the complexity of the problem, rather than looking for approximation algorithms,

3

we take a different route. We analyze those bipartite suitability networks for which

the optimal policies and Markov Perfect Equilibrium strategies take a simple per-

sistent form, where every worker works on the same task until it is completed.

Our first observation is that, whenever there are two tasks left to accomplish,

the optimal policy of the planner and of the Markov Perfect Equilibrium strategies

of the workers are easy to understand. In the optimal solution to the planner’s

problem, the planner always allocates a worker who can accomplish both tasks to

the “hardest” task (the task that the smallest number of workers can accomplish).

This is because, whenever the hardest task is accomplished, the set of workers

available to work on the remaining task is larger, and hence the expected time of

completion of the project is shorter. In the worker’s game we show that workers

have a weakly dominant strategy. This strategy prescribes that a worker who can

work on both tasks always chooses to work on the “easiest” task (the task that

the largest number of workers can accomplish). This is due to the fact that, once

the easiest task is accomplished, the set of agents competing for the reward on the

second task is smaller, and hence the expected reward of the worker is larger.

Extending these optimal policies and equilibrium strategies to more than two

tasks requires assumptions on the bipartite suitability network. We uncover prop-

erties on the bipartite network, Union Size Invariance, Submodularity and Increas-

ing Differences, which guarantee that the optimal policy in the planner’s problem

and the Markov Perfect Equilibrium strategies in the worker’s game are persis-

tent and prescribe the same simple choice as in the two-task problem. Union Size

Invariance states that, whenever the number of workers who can work on task a

is greater than the number of workers who can work on task b, the same rank-

ing holds for the number of agents who can work on task a or any union C of

tasks different from a and b, and the number of agents who can work on b or C.

Under Union Size Invariance, the ranking of tasks remains invariant throughout

the entire project, and the planner optimally chooses to allocate workers to the

hardest tasks. Submodularity and Increasing Differences are different properties,

which state that the marginal effect of a new task on the number of agents who can

achieve the task is lower for tasks with lower number of workers. Submodularity

4

and Increasing Differences, together with Union Size Invariance, show that in any

Markov Perfect Equilibrium of the worker’s game, workers always choose to work

on the easiest task.

While Union Size Invariance, Submodularity and Increasing Differences can be

viewed as stringent requirements on the bipartite suitability network, we provide

two interesting families of networks which satisfy these conditions. In the Ranked

Tasks Model, tasks are ordered so that any worker who can work on task i can

work on any task j > i as if the tasks are ordered by difficulty or security clearance.

In the Generalist-Specialists model, the set of workers is divided into specialists

who can only work on a single task, and generalists who can work on all tasks.

Our analysis points to a complete reversal of policies in the centralized and

decentralized models. In the centralized model, hardest tasks are completed first,

whereas they are completed last in the decentralized model. In fact, the incentives

of workers in the decentralized model are opposite to the planner’s to the point that

an increase in the number of workers may result in an increase in the completion

time of the project. The only situation where the workers’ and planner’s incentives

are aligned is when they are always indifferent among all the tasks, a situation

which only arises when the bipartite suitability network satisfies a strong symmetry

condition.

In order to implement the first best task allocation within the decentralized

framework, the planner can use differential rewards. We show that there always

exist a system of contingent rewards (which depend on the set of remaining tasks)

that can be used to implement the first best. Non-contingent rewards, chosen ex

ante and independently of the set of remaining tasks, can be used if and only if

there is no exclusive task (a task that only a single agent can complete). As an

example, we derive the differential rewards for the ranked tasks model with three

tasks.

Finally, we compute the “price of anarchy” by measuring the relation between

the expected time of completion of all tasks in equilibrium of the decentralized

framework relative to expected time of completion of all tasks by the optimal

solution of the planner. We show that when there are two tasks, the expected

5

completion time in the workers’ game is at worse 20% higher than in the optimal

solution, and that the “price of anarchy” increases with the number of tasks at

most in a linear way.

The rest of the paper is organized as follows. Section 2 describes the related

literature. Section 3 presents the model. We then analyze the planner’s problem in

Section 4 and the workers’ game in Section 5. Section 6 discusses the comparison

between the two solutions. We conclude in Section 7. All proofs are relegated to

the Appendix.

2 Related Literature

Our model is a dynamic two-sided many-to-one matching problem. In their

seminal contribution, Gale and Shapley (1962) analyzed stable matches in a static

one-to-one setting where both sides have preferences over the agents in the other

side. Kelso and Crawford (1982) show that a stable matching exists under a gross

substitutability condition, which ensures that any task that is chosen by a worker

from a set of available tasks is still chosen when the set shrinks. Our Union Size

Invariance condition is similar in spirit, but it is in terms of the dynamically chang-

ing bipartite suitability network connecting workers to tasks.

The dynamic matching literature allows participants in the market to arrive

sequentially, but usually keeps the assumption that when a match is realized both

agents leave the market (see Baccara and Yariv, 2023 for a recent survey). In our

model, the market structure is fixed and workers remain active as long as there is

an incomplete available task. Most related to our setting, Baccara, Lee and Yariv

(2023) study an infinite horizon model where clients are arriving sequentially and

are allocated between senior and junior service providers. Seniors provide better,

but potentially slower, service, while juniors acquire the expertise needed to be-

come seniors by on-the-job training. In contrast, in our setting the heterogeneity

stems from workers not being able to perform all tasks. Furthermore, they compare

the case of a planner that allocates clients to employees to the case of clients that

allocate themselves to seniors or juniors, while we compare the case of a planner

6

that allocates tasks to workers to the case where workers allocate themselves to

tasks.

In addition, many recent studies on dynamic matching provide decision rules

for the dynamic allocation of workers to tasks that approximates the first best

(e.g., Jeloudar, Lo, Pollner and Saberi, 2021 and Doval, 2022). We take a differ-

ent approach by characterizing the structural features of the bipartite suitability

network that ensure the optimality of a certain simple decision rule. Importantly,

while this literature mostly focuses on stationary environments, we study a finite

horizon framework where the set of tasks and the set of workers are exogenous and

fixed.

Our paper is also related to search problems. For example, Kranton and Mine-

hart (2001) show that when prices are set competitively, workers link to tasks in a

way that leads to the efficient allocation. While in our basic model the planner’s

and the workers’ incentives are misaligned when tasks have the same value, we

show that under weak conditions, the planner can set rewards that implement its

preferred solution.2 Another example is the relation between our setting and par-

allel search. Problems of sequential search were pioneered by Weitzman (1979).3

In this model, a single agent chooses both the order in which she checks different

alternatives and a stopping rule. The extensions of this model to parallel search

(e.g., Vishwanath, 1992 and Loch, Terwiesch and Thomke, 2001) bear some re-

semblance to the point of view of the planner in our problem. However, there are

at least two crucial differences. First, we consider a planner whose objective is to

complete all tasks, rather than select an alternative. Second, we introduce hetero-

geneity via the feasibility graph describing which task each worker can perform.

The task allocation problem we study can be interpreted as a stochastic schedul-

2A similar theme of alignment of the planer’s objectives and the workers’ incentives is studied
in the literature on team formation. For example, Hart and Moore (2005) show when organiza-
tions should place workers with a larger span (coordinators) higher in the hierarchy compared to
specialists. Bernstein and Winter (2012) and Dasaratha, Golub and Shah (2023) study how to
design contracts or equity shares when there are externalities between workers who participate
in a project to optimally create teams.

3See Doval (2018), Eliaz, Fershtman and Frug (2021) and Fershtman and Pavan (2022) for
recent relevant extensions.

7

ing problem.4 Importantly, the standard assumption in this literature is that each

worker can work on (at most) one task at a time and each task can be processed

by (at most) one worker at a time. In our setup, we allow several workers to work

on the same task at the same time.5 Pinedo and Reed (2013) study a similar

framework where tasks are homogeneous, workers have different processing speeds

and the availability constraints are nested. Their optimal policy closely parallel

our result on the planner’s optimal strategy in the context of the “ranked tasks”

model, where the availability constraints are nested. Our contribution to the lit-

erature in scheduling is two-fold. First, we extend the optimality of the “hardest

task first” rule beyond the nested availability bipartite graph to a much larger

class of availability restrictions. Second, we contrast the solution of the centralized

problem with the equilibrium of the decentralized model, where each server acts

independently, and show that the two models may result in opposite incentives

unless rewards are permitted.

Finally, we wish to point out the relation of our framework to the literature

on task allocation and team formation in multi-agent systems (see Rizk, Awad

and Tunstel, 2019 and Khamis, Hussein and Elmogy, 2015 for recent surveys).

However, the emphasis and approach are very different. While the literature in

task allocation in multi-agent systems uses approximation and simulations to point

out the importance of coordination and complementarities, we use mainly analytic

methods and focus on the dynamic allocation of tasks.

4In our framework, the set of tasks is equivalent to a known and finite set of jobs and the set
of workers is equivalent to a set of identical machines that process these jobs. In addition, jobs’
completion rates are distributed exponentially, jobs are subject to machine eligibility restrictions
and preemption is allowed. In the scheduling terminology, the central planner’s problem is to
minimize the makespan. By this analogy, the workers’ game is a non-cooperative machines’ game.
This game is not equivalent to the standard scheduling games since the players are the machines
rather than agents who use the machines as resources. This literature is very well introduced in
Pinedo (2022) (especially relevant is chapter 12.2).

5For example, a typical example for the operations research approach is of a call center where
each customer is satisfied with receiving the services of a single representative. A typical example
for our approach, as described in the introduction, is of a research center that wishes to tackle
a specific scientific question and may optimally assign multiple teams to simultaneously engage
with this task.

8

3 The model

Workers are assigned to tasks dynamically. Each agent can engage with one

task at a time. Tasks are completed stochastically and the process ends when all

tasks are resolved. The planner’s problem is to dynamically assign workers to tasks

to minimize the expected completion time. In the workers’ game each agent wishes

to complete as many tasks as possible. We begin by defining the components of

the environment, then we move to define the timing and the objectives and we

conclude by providing two simple, but useful, examples.

3.1 Workers and tasks

Consider a bipartite network G between a finite set of workers, W (G) =

{w1, w2, . . . } with cardinality w(G), and a finite set of tasks, T (G) = {t1, t2, . . . }

with cardinality t(G). G assigns each worker wi with the setHi(G) ⊆ T (G) of tasks

on which the worker can work. Hi(G)’s cardinality is denoted by hi(G) and let

H(G) = {H1(G), H2(G), . . . }. Conversely, for any task tj, Aj(G) ⊆ W (G) denotes

the set of workers who can work on this task, that is, Aj(G) = {wi|tj ∈ Hi(G)}.

We denote Aj(G)’s cardinality by aj(G). We say that task tj is “harder” than task

tk if aj(G) < ak(G). Let A(G) = {A1(G), A2(G), . . . }.

More generally, for any subset of tasks S ⊆ T (G), AS(G) denotes the set of all

agents who can work on at least one task in S. Formally, AS(G) =
⋃

tj∈S Aj(G).

We denote AS(G)’s cardinality by aS(G). In addition, we say that G − S is the

sub-network of G that forms when S is the set of completed tasks.6

We assume that the graph G is connected. This implies that for any task

tj ∈ T (G), there exists another task tk such that Aj(G) ∩ Ak(G) ̸= ∅. In ad-

dition, for any worker wi ∈ W (G), there exists another worker wl such that

Hi(G) ∩Hl(G) ̸= ∅.7

Note that the network G changes over time as tasks get resolved. Therefore,

6A sub-network G− S is the bipartite network where the set of tasks is T (G− S) = T (G)\S
and the set of workers is AT (G−S)(G).

7If the graph is not connected, we can decompose the problem into a series of independent
problems, one for each connected component of the graph G.

9

the notions we introduced are defined as functions of G. Whenever it is convenient

and no confusion may arise, we abuse notation and drop the dependence on G.

3.2 Timing

The model is dynamic and time is continuous. We suppose that there is no

precedence order on tasks, so that they can be accomplished in any sequence. The

process begins with the feasibility network G. We refer to the period between the

beginning and the first completion as period 1. If task tj was the task that was

completed first, then the set of tasks in the new feasibility network, G′, at the

beginning of period 2 is T (G′) = T (G)\{tj} = {t1, t2, . . . , tj−1, tj+1, . . . } and the

set of workers isW (G′) = AT (G′) (i.e., W (G) excluding the workers that could only

be assigned to task tj). We refer to the period between the first completion and the

second completion as period 2. If task tk was the task that was completed second,

then the set of tasks in the new feasibility network, G′′, at the beginning of period 3

is T (G′′) = T (G′)\{tk} = T (G)\{tj, tk} and the set of workers is W (G′′) = AT (G′′).

The process ends when all m tasks have been completed successfully. That is,

period m is the final period.

We suppose that the completion of tasks is stochastic. Every worker has a

stream of successes (completions) that follows a Poisson distribution with a fixed

homogeneous parameter λ > 0. Therefore, if a subset of agents R ⊆ W (G) of

cardinality r works on the same task tj, the stream of successes on task tj follows

a Poisson distribution with a fixed parameter rλ. Since we assume that a task is

resolved after the first success, the time until the completion of task tj follows an

exponential distribution with parameter rλ and its mean is 1
rλ
.

Moreover, consider a subset of tasks S ⊆ T (G), where S = {tS1 , tS2 , . . . }.

Suppose that s1 agents work on task tS1 , s2 agents work on task tS2 and so on.

The stream of successes on the set S follows a Poisson distribution with a fixed

parameter (s1 + s2 + . . .)λ. Therefore, the time until the completion of the first

task in S follows an exponential distribution with parameter (s1 + s2 + . . .)λ and

its mean is 1
(s1+s2+...)λ

. The stochastic nature of this process implies that the mean

10

duration of a period depends on the number of agents who work on any task in

that period.

Workers can be re-assigned to the set of the remaining incomplete tasks, at

any point in time. However, since the Poisson distribution is memory-less, it is

enough to consider re-assignments only between periods. This property enables us

to focus on intertemporal considerations. In addition, since the workers have no

outside option and their work in not costly, idle periods are not optimal both in

the planner’s problem and in the workers’ game.8

3.3 Objectives

We consider different preferences for the planner and for the workers. The ob-

jective of the planner is to complete all tasks as quickly as possible. That is, she

suffers additive waiting cost across periods before the completion of the project.

By contrast, we suppose that the workers receive a unit reward every time they

complete a task.

Formally, denote the random variable that represents the duration of period

k by τ̃k. We denote the random variable that represents the total duration by

τ̃ =
∑m

k=1 τ̃k. Hence, the utility of the planner is Up = −E(τ̃). For the work-

ers, denote by ψ̃k the random variable that represents the identifier of the worker

that completed the task in period k. For every worker wi, we denote the random

variable that represents the number of tasks he completed himself by κ̃i = |{k ∈

{1, . . . ,m}|ψ̃k = wi}|. Hence, worker wi receives a utility Ui = E(κ̃i).

We thus distinguish between two problems. The centralized planner’s problem,

which we study in section 4, is an optimization problem where the planner chooses

a policy to assign workers to tasks. The decentralized workers’ game, which we

study in section 5, is a stochastic game where workers choose which task to work

on at any period.

DOTAN: THE PREFERENCES OF THE TWOTYPES OF DECISIONMAK-

8See the discussion in Pinedo and Reed (2013) on re-assignment and idleness. Their conclu-
sions are similar. First, an optimal preemptive policy only needs to consider preemptions at the
completion of a task. Second, unforced worker idleness cannot be optimal.

11

ERS ARE DIFFERENT. HOWEVER, WE DEFINE A MUTUAL CONCEPT OF

SIMPLICITY AS A PROPERTY OF A DECISION MAKING PROCEDURE

THAT IS BASED ASSIGNMENT TO TASKS BASED ON AN ORDERING

THAT DOES NOT CHANGE THROUGHOUT THE DYNAMIC PROCESS.

SIMPLICITY IMPLIES NO PREEMPTION BETWEEN PERIODS (UNLESS

THE TASK IS RESOLVED).

3.4 Two examples

3.4.1 Example 1: The Ranked Tasks Model

Suppose that tasks can be ranked by objective difficulty, that is, task tj is

objectively more difficult than task tk if j < k. In addition, suppose that every

agent has a given set of skills which allows her to work on any task which is easier

than a given difficulty threshold. That is, the bipartite feasibility graph in the

Ranked Tasks Model, denoted by R, is such that each worker wi is characterized

by an integer qi ∈ {1, 2, . . . ,m} such that Hi(R) = {tqi , tqi+1, . . . , tm}.9 Note that

in the Ranked Tasks Model, the sets in A(R) are nested, that is, j < k implies

Aj(R) ⊆ Ak(R).
10 Figure 1a illustrates a Ranked Tasks Model with three agents

and three tasks.

3.4.2 Example 2: The Specialist-Generalists Model

Suppose that there are two types of workers—Specialists who can only work on

one task and Generalists who can work on all tasks. Denote the bipartite feasibility

graph in the Specialist-Generalists Model by SG. Note that for a specialist worker

who can work only on task tk, Hi(SG) = {tk} is a singleton while for every

generalist worker Hi(SG) = T (SG). Denote the set of specialists that work on

task tk by W S
k (SG) = {wi ∈ W (SG) : Hi(SG) = {tk}} and the set of generalists

9Security clearance is an alternative interpretation for the ranked tasks model. By this inter-
pretation, task tj requires a higher security clearance than task tk if j < k and each agent wi

is characterized by a security clearance qi that allows her to work on tasks that are not more
confidential than task tqi .

10The bipartite graph corresponding to the Ranked Tasks Model is called a “bipartite chain
graph”.

12

1

2

3 III

II

I

(a) The Ranked Tasks Model where
q1 = I, q2 = II and q3 = III.

1

2

3 III

II

I

(b) The Specialists-Generalists
Model where H1 = {I}, H2 = T
and H3 = {III}.

Figure 1: Two examples using three agents ({1, 2, 3}) and three tasks
({I, II, III}).

by WG(SG). For every task tk ∈ T (SG), Ak(SG) = W S
k (SG) ∪WG(SG). Figure

1b illustrates a Specialist-Generalists Model with three agents and three tasks.

4 The planner’s problem

The planner dynamically assigns workers to tasks to complete all tasks as

quickly as possible. We begin by writing the optimization problem using Bell-

man equations. Then, we solve the problem for the case of two tasks in order to

provide intuition for the main result. The main result characterizes a family of

bipartite networks where the optimal assignment of workers to tasks follows a sim-

ple rule: assign each worker to the “hardest” task available to her. We conclude

the section with a discussion of this result and its implication for the two models

introduced in section 3.4.

4.1 Problem Definition

The planner’s problem is to find a policy that minimizes the expected time it

takes to complete all tasks. A policy is a specification of an assignment of workers

to tasks for each possible feasibility network.

Formally, an assignment is a mapping µG : W (G) → T (G) such that for any

13

worker wi, µG(wi) ∈ Hi(G) is the task wi is assigned to. Since all workers are

identical except for their position in graph G, an assignment can be summarized

by the number of workers it assigns to each task. That is, the assignment µG can

be summarized by the aggregate vector r(µG) = (r1, .., rj, .., rm) where rj = |wi :

µG(wi) = tj|.11 A policy of a planner for a feasibility graph G is a choice of an

assignment µG′ for every sub-network G′ of G.

The value to the planner of the assignment µG, v(G, r(µG)), is equal to the

negative of the expected time of completion of all tasks in T (G). The value to the

planner at the optimal action is denoted by V (G). The value at G is a function of

the optimal values V (G− {tj}) for any task tj ∈ T (G):

v(G, r(µG)) = − 1

λw(G)
+

∑
tj∈T (G)

rj
w(G)

V (G− {tj}). (1)

Three key observations are required in order to understand equation 1. First,

notice that, due to the exponential distribution of the time of completion of tasks,

the expected time of completion of any task in T (G) is equal to 1
λw(G)

, where w(G)

is the number of workers active in feasibility network G. Second, since workers

are identical, the probability that task tj will be the completed task is the fraction

of workers that engage with it, i.e.,
rj

w(G)
. Third, once tj is completed, the new

feasibility graph is G−{tj} and the planner selects the optimal action at G−{tj}

resulting in the value V (G− {tj}).

The planner’s problem is thus a finite-horizon, recursive, Markov decision prob-

lem, where the set of states is the set of all sub-networks of the initial feasibility

graph. Therefore, the Bellman equation for the planner’s problem is:

V (G) = − 1

λw(G)
+ max

r(µG)

∑
tj∈T (G)

rj
w(G)

V (G− {tj}). (2)

This equation shows that the assignment does not affect the value received at

state G, which is always equal to − 1
λw(G)

, but only the probability of transition to

11The association between assignments and aggregate vectors is not one-to-one. Since re-
assignment is free and possible at any point in time, our analysis does not require such a relation.

14

the states
{
G− {tj}

}m

j=1
. Hence, the optimal assignment at G is driven solely by

the values V (G− {tj}).

Lemma 1 In an optimal assignment, worker wi is assigned to task tj ∈ Hi such

that tj ∈ argmaxtj∈T (G) V (G− {tj}).

Lemma 1 points out that the planner’s optimal policy is characterized by a ranking

of tasks at each feasibility graph G. This ranking is obtained by considering the

values V (G− {tj}) for any task tj. If different tasks generate the same value, and

this is the highest value among the tasks in Hi, the planner is indifferent between

assigning agent wi to any of the tasks. To “break” the indifference we assume,

without loss of generality, that there exists a fixed, exogenous ranking of the tasks

and that the planner assigns agent wi with highest rank among the tasks which

generate the highest value.12

4.2 Two Tasks

Suppose that there are only two tasks left to be completed, T (G) = {t1, t2}.

Obviously, the workers that can work on t1 and cannot work on t2 are optimally

assigned to task t1 and the workers that can work on t2 and cannot work on t1 are

optimally assigned to task t2. It is left to find the optimal assignment of agents

that can work on both tasks.

The value V (G−{t1}) is the expected time it takes to complete task t2 when it

is the final task left to be completed (with a negative sign). Since a2 workers can

work on task t2, V (G−{t1}) = − 1
a2
. Similarly, V (G−{t2}) = − 1

a1
is the expected

time to complete task t1. By Lemma 1, the workers that can potentially work on

both t1 and t2 should be assigned to the task tj that maximizes V (G − {tj}) for

j ∈ {1, 2}. If a1 > a2 then V (G− {t2}) > V (G− {t1}) and therefore it is optimal

to assign the worker to task t2. Similarly, if a2 > a1 then it is optimal to assign the

12There is no loss of generality in specifying a tie-breaking rule in the Markov decision problem
because all tie-breaking rules generate the same value V (G). To see this, consider two tasks tj
and tk such that V (G−{tj}) = V (G−{tk}). By equation (2), any two assignments (rj , rk) and
(r′j , r

′
k) such that rj +rk = r′j +r′k generate the same value, V (G). The argument clearly extends

to the case where there are more than two tasks with the same value.

15

worker to task t1. The optimal action is then to assign any agent who can work

on both tasks to the task with the “hardest” task.

Lemma 2 Suppose that there are only two tasks, T (G) = {t1, t2}. Then the plan-

ner optimally assigns an agent who can work on both tasks to task t1 if a1 < a2, to

task t2 if a2 < a1 and to either task if a1 = a2.

The simple argument underlying Lemma 2 is that the objective of the planner

is to maximize the number of active workers after the first of the two tasks is

completed. The number of active workers in the final period will clearly be larger

if the hardest task is completed first. Therefore, it is optimal for the planner to

assign as many workers as possible to the hard task in period 1.

4.3 Main Result

4.3.1 Simple Problems

With more than two tasks, the computation of the optimal action of the planner

becomes much more complex.13

SIMPLICITY IN THE PLANNER’S PROBLEM IS

NOT DEFINITION

Faced with the high complexity of the planner’s problem for general feasibility

graphs, we opt to study situations where the problem becomes “simple”. Formally,

for every feasibility network G, we denote by O(G) the ranking of tasks in T (G)

by V (G− {tj}).

Definition 1 The planner’s problem given feasibility network G is simple if for

every G′ ⊆ G, O(G′) is a restriction of O(G) to T (G′).

In a simple problem, there exists a single ranking of the tasks in T that does not

change throughout the dynamic process. In each period, every worker capable of

handling multiple tasks is assigned to the highest-ranked uncompleted task feasible

for them. One important implication of simplicity is that, in simple problems, it

13Already with three tasks, the problem becomes hard to solve. In Appendix B, we propose a
detailed analysis of the three-tasks problem.

16

is optimal for the planner to refrain from reassigning agents between tasks unless

the task they were initially assigned to has been completed.14 Next, we provide a

sufficient condition for the simplicity of feasibility graphs.

4.3.2 Union Size Invariance

We now define a property on the original suitability graph G0, that we term

Union Size Invariance, that guarantees that the problem of the planner is simple.

Definition 2 The suitability graph G0 satisfies Union Size Invariance if, for any

two tasks j, k,

• If aj = ak, for any subsets of tasks S which does not contain j, k, aS∪j = aS∪k;

• If aj < ak, for any subsets of tasks S which does not contain j, k, aS∪j ≤ aS∪k.

Union Size Invariance guarantees that the ranking obtained by measuring the

number of workers capable on working on every single task (the ranking generated

by aj) is not reversed when one considers situations where a larger set of tasks

remains available. Intuitively, this condition guarantees that the ranking used

to assign workers when there is a single task left remains true for any number

of remaining tasks. Note that Union Size Invariance treats differently situations

where two tasks are ranked at the same level (aj = ak) or at different levels aj ̸= ak.

In the first case, indifference of the planner must remain true for any number of

remaining tasks, so that the set of agents who can work on any subset S ∪ j must

be exactly equal to the set of agents who can work on any subset S ∪ k. In the

second case, the ranking of tasks must not be reversed, but the number of agents

who can work on any subsets S ∪ j and S ∪ k is not exactly pinned down.

It is easy to check that the ranked tasks model (or equivalently the nested

machines constraint in Pinedo and Reed, 2013) satisfies Union Size Invariance.

Consider two tasks j, k such that aj = ak. Then by construction, we must have

Aj = Ak. Hence for any subset of tasks S, AS∪j = AS∪k. Next suppose aj < ak.

Let S be a set of tasks and l the task with the highest index in S. If l > k then

14In the terminology of scheduling problems, a problem is simple if preemption is not optimal.

17

AS∪j = AS∪k = Al and hence aS∪j = aS∪k. If k ≥ l then AS∪k = Ak ⊇ Aj∪S, so

that aS∪k ≥ aS∪j.

The generalists-specialists model also clearly satisfies Union Size Invariance.

Consider two tasks j, k. Notice that Aj = SPj ∪ GE,Ak = SPk ∪ GE and SPj ∩

SPk = ∅. For any subset of tasks S, let SPS be the number of specialists who can

work on any task in S. Then SPS ∩SPj = SPS ∩Sk = ∅ and AS = SPS ∪GE. We

thus have aS∪j = aj + aS − g and aS∪k = ak + aS − g. This implies that if aj = ak,

then aS∪j = aS∪k and if ak < al then aS∪j < aS∪k.

There are of course many other suitability graphs which satisfy Union Size

Invariance. For example, suppose that every worker can work on at most two

tasks and that all tasks have a different ranking (aj ̸= ak for all j, k). Then Union

Size Invariance is equivalent to the requirement that for any two tasks j, k such

that Aj ∩ Ak ̸= ∅ and aj < ak, and any subset of tasks S different from k, l

∑
l∈S

(|Ak ∩ Al| − |Aj ∩ Al|) ≤ (ak − aj).

This condition is likely to be satisfied if the number of agents who can work on

two tasks is small relative to the number of agents who can only work on one task,

or if the number of agents who can work on two tasks has small variation across

pairs of tasks.

We now state the main Theorem of this Section, showing that the Markov

Decision Problem of the planner is simple under Union Size Invariance.

Theorem 1 Suppose that the initial suitability graph G0 satisfies Union Size In-

variance. Then the planner’s dynamic task allocation problem is simple and assigns

all workers to the hardest tasks.

Theorem 1 shows that, under Union Size Invariance, the vector a = (a1, ..., am)

is a sufficient statistic to generate all states in the state space. The ranking of

tasks is given by the ranking of the numbers aj and the problem becomes linear

in the number of tasks. The planner always assigns a worker to the “hardest

task” (the task with the lowest number aj) first. The planner prefers to send

18

the workers to the hardest tasks first, in order to maximize the number of active

agents in subsequent periods, thereby reducing the expected time of completion of

the whole project.

In the proof of Theorem 1, we also show that the expected value of the planner

is a strictly increasing function of the number of workers who can work on any

task. Hence, when the agents are assigned to targets according to the planner’s

optimal policy, increasing the number of agents always results in a decrease in the

expected completion time.

5 The worker’s game

We now turn our attention to the worker’s game. At any suitability graph

G, agent i chooses a probability distribution pi over the tasks in Hi(G), with pji

denoting the probability that agent i works on task j. Worker i receives a reward

normalized to 1 if she completes the task. As all agents succeed according to the

same Poisson process with parameter λ, this happens with probability 1
w(G)

.

The model can also be interpreted as a model of team cooperation. If workers

form teams to work on a task and share equally the the reward inside teams, the

agent’s payoff in a team of size rj would be equal to

rj
w(G)

1

rj
=

1

w(G)
.

The worker’s game is a finite-horizon, multi-stage game, and we consider Markov

Perfect Equilibria (MPE) of the game. As in the planner’s problem, the state space

is the set of all subgraphs of the initial suitability graph G0 after deletion of the

nodes corresponding to tasks. A strategy for player i is a mapping associating a

probability distribution over Hi(G) to any suitability graph G.

Consider a fixed MPE. We let Ui(G) denote the payoff of player i at suitability

graph G at equilibrium. We denote by ui(G,p) the payoff to player i given the

strategy profile p at G, assuming that the MPE is played at all subsequent periods.

19

Using the recursive structure of the game, we compute

ui(G,p) =
1

w(G)
+

∑
j∈T (G)

∑
k p

j
k

w(G)
Ui(G− j), (3)

where
∑

k p
j
k denotes the expected number of workers working on task j.

In a MPE, every player chooses pi to maximize ui(G, pi, p−i) at any graph

G. Because ui(G, pi, p−i) is a linear function of p, every worker has a dominant

strategy. As in the planner’s problem, the dominant strategy of the worker is to

select a task j ∈ Hi(G) for which the continuation value Ui(G− j) is highest.

Lemma 3 In a Markov Perfect Equilibrium, if pji > 0, then

Ui(G− j) ≥ Ui(G− k)∀k ∈ Hi(G).

When there are multiple tasks which result in the same continuation value, we

assume that agent i chooses her task according to a fixed, exogenous ranking. As

opposed to the planner’s problem, this tie-breaking rule is not innocuous in the

construction of the MPE of the worker’s game. It will affect the expected number

of workers who choose to work on every task, and hence the value of all workers

in the game—including workers who are not indifferent among tasks.

As in the planner’s problem, the dominant strategy of a worker is easily com-

puted when there are only two tasks left. When T (G) = {t1, t2}, the continuation

values are Ui(G− 1) = 1
a2

and Ui(G− 2) = 1
a1
. The dominant strategy is to work

first on the “easiest” task for which the number of workers is highest, and reserve

the hardest task for the end.

Lemma 4 Suppose that there are only two tasks, T (G) = {t1, t2}. Then in a

MPE, a worker who can work on both tasks prefers to work on task t1 if a1 > a2,

on task 2 if a2 > a1 and on either task if a1 = a2.

Lemma 4 shows that the incentives of the planner and the workers are dia-

metrically opposed. The worker’s objective is to minimize the number of active

20

workers in the second period in order to limit competition. They will thus choose

to work on the easiest task first and keep the hardest task for the last period.

The computation of the dominant strategy of a worker is as complex as the

computation of the solution of the planner’s optimal policy. As the number of

states grows exponentially with the number of tasks, the computation of the MPE

of the workers’ game also grows exponentially with the number of tasks. As in the

planner’s problem, we define a simple situation where the strategy of the worker

is independent of the suitability graph G

Definition 3 The strategy of the worker is simple if the ranking of tasks is inde-

pendent of the suitability graph G.

When they use simple strategies, the workers continue to work on the same

task until it is completed. Strategies are thus time-consistent. In the terminology

of scheduling, there is no preemption.

The construction of MPE in simple strategies in the workers’ game is reminis-

cent of the construction of a simple optimal policy for the planner, but we highlight

two major differences. First, as every worker has a different set of tasks that she

can work on at any graph, Ti(G), even when simple strategies are employed, one

needs to keep track of the number of agents who can work on every task in the

state. Hence the state cannot be summarized by a vector a describing the number

of workers capable of working on any task, independent of the identity of tasks,

as in the planner’s problem. Second, while the planner can choose the number

of agents working on any task, the worker can only rank those tasks that she is

capable of working on. Hence the relevant ranking of tasks for worker i is the

ranking of the tasks in Hi(G0) even though her value V depends on the number

of workers working on all tasks. This means that, as opposed to the planner’s

problem, making the ranking of agent i’s task independent of the graph G is not

sufficient to conclude that the value of the worker is monotonically decreasing in

the number of agents who can accomplish any task.

In addition, in order to show that the dominant strategy of the workers in a

MPE are simple, we need to impose two additional conditions on the suitability

21

graph G0 that we term Submodularity and Increasing Differences.

First we order the tasks so that if aj < ak then j < k and if aj = ak, j < k if j

precedes k in the exogenous ranking of tasks.

Definition 4 The initial suitability graph G0 satisfies Submodularity if, for any

two consecutive tasks j and k, and any possible subset of tasks S of rank higher

than k,

aS∪k − aS ≥ aS∪j∪k − aS∪k

Definition 5 The initial suitability graph G0 satisfies Increasing Differences if the

following condition holds. Consider a task l and two tasks j and k of rank higher

than l with j < k. Then for any possible subset of tasks S of rank higher than l

excluding j and k,

aS∪l∪k − aS∪k ≥ aS∪l∪j − aS∪j.

Submodularity and Increasing Differences are conditions on the marginal effect

of the addition of a new task on the set of agents who can perform a subset of

easier tasks. Submodularity states that this effect is larger when the set of tasks

is smaller. Increasing Differences states that the effect is larger when the subset of

easier tasks contains a task which can be completed by a larger number of workers.

We check that the ranked tasks and generalist-specialists models both satisfy

Submodularity and Increasing Differences. In the ranked tasks model, if j < k

and S is a subset of tasks easier than k, then AS∪j∪k = AS∪j = AS∪k so that

aS∪k − aS = 0 = aS∪j∪k − aS∪k, and Submodularity holds. If l < j and l < k, then

Al ∪ Aj = Aj and Al ∪ Ak = Ak. Hence aS∪l∪j − aS∪j = 0 = aS∪l∪k − aS∪k for any

set S of tasks of rank higher than l and Increasing Differences holds.

In the generalist-specialists model, aS∪k = aS + ak − g. So aS∪k − aS = ak − g

and aS∪j∪k − aS∪k = aj − g. So

aS∪k − aS − (aS∪j∪k − aS∪k) = ak − aj ≥ 0,

22

and Submodularity holds. If l < j < k, then

aS∪l∪j − aS∪j = aS + al + aj − 2g − (aS + aj − g),

= al − g,

= aS + al + ak − 2g − (aS + ak − g),

= aS∪l∪k − aS∪k,

and Increasing Differences holds.

We now prove the main Theorem of the Section, stating conditions under which

the workers’ game admits a MPE in simple strategies.

Theorem 2 If the initial suitability graph G0 satisfies Union Size Invariance, Sub-

modularity and Increasing Differences, the worker’s game admits a Markov Perfect

Equilibrium where all workers adopt simple strategies and choose to work on the

easiest tasks.

Theorem 2 shows, under Union Size Invariance, Submodularity and Increasing

Differences, the existence of a MPE of the worker’s game where all workers adopt

the same simple strategy. At any state a = (a1, ..., am) characterized by the number

of workers capable of working on the remaining tasks, agents choose to work on

the “easiest task”.

6 The planner’s and workers’ task allocations

Theorems 1 and 2 show that, when the conditions for simple solutions are

strategies are satisfied, the task choices of the planner and the workers are diamet-

rically opposed: the planner’s optimal policy is to assign workers to tasks with the

smallest number of workers, whereas in the equilibrium of the workers’ game, all

workers choose to work on the task with the largest number of workers. In this

Section, we discuss the difference between the planner’s and the workers’ choices

by (i) characterizing situations when the choices are identical, (ii) discussing a

policy where the planner differentiates the rewards to the tasks, (iii) establishing

23

comparative statics on the effect of the number of workers on the expected comple-

tion time and (iv) providing a bound for the price of anarchy in the ranked tasks

model.

6.1 Coincidence of the planner’s and the workers’ task al-

locations

We first analyze situations where the solution to the planner’s problem and the

equilibrium strategies in the worker’s game are identical. For the two problems to

have the same solution, the planner and the workers must be indifferent among all

the tasks at every state. This requires the number of agents to be identical across

tasks at any state. The following Proposition characterizes those initial suitability

graphs G0 for which the condition holds.

Proposition 1 The optimal policy of the planner results in the same assignment

as an MPE of the planner’s game if and only if aj = ak for all tasks j, k and for

all collections of k ≤ m elements {A1, ..., Ak} and {B1, ..., Bk} in A, | ∩k
j=1 Aj| =

| ∩k
j=1 Bj|.

Proposition 1 shows that the suitability graph G0 needs to satisfy a very strong

symmetry condition for the solution to the planner’s problem to be equal to the

MPE of the workers’ game. This strong symmetry condition is satisfied by the

complete bipartite network, where all intersections of k sets are equal to the set

of all workers. It is also satisfied in the specialists-generalist model when all tasks

have the same number of specialists. In that case, any intersection of k sets is

equal to the set of generalists.

6.2 Differential rewards

In this subsection, we study the effect of a policy by which the planner offers

different rewards for the different tasks. We first consider contingent rewards which

are conditional on the current suitability graph G. A contingent reward scheme

defines, for every suitability graph G, a vector (ρ1(G), ..., ρj(G), ..., ρt(G)(G)) of

24

rewards for all the tasks tj = t1, ..., tt(G) in T (G). In the worker’s game, the utility

of worker i choosing a probability vector p is then given by:

ui(G,p) =
∑

j∈T (G)

pjiρj(G)

w(G)
+

∑
j∈T (G)

∑
k p

j
k

w(G)
Ui(G− j), (4)

As the worker’s payoff is linear in pji , every worker who can work on multiple

tasks has a weakly dominant strategy and chooses the task for which the sum

ρj(G) + Ui(G− j) is the highest.

Lemma 5 In a Markov Perfect Equilibrium, if pji > 0, then

ρj(G) + Ui(G− j) ≥ ρk(G) + Ui(G− k)∀k ∈ Hi(G).

Consider a suitability graph for which the solution to the planner and the

strategies of the workers are simple, and order the tasks so that i < j implies that

ai ≤ aj.

Define the payoffs recursively. When t(G) = 1, ρj(G) = 1.

For any G with t(G) > 1, let ρt(G)(G) = 1 and for any j = 1, ..., t(G)− 1, let

ρj(G) = max
k>j]maxi {j,k∈Hi

ρk(G) + Ui(G− k)− Ui(G− j)

The definition of the contingent rewards thus follows a double recursion (i) on

the number of tasks in T (G) and (ii) on the tasks, starting with the task with

the largest number of workers. It is easy to check that, with the given reward

scheme, any worker i works on the task with the smallest index. Hence there exists

a contingent reward scheme which guarantees that all workers work on the optimal

task chosen by the planner.

We next look for non-contingent rewards, which are chosen ex ante and do not

depend on the current suitability graph. A non-contingent reward scheme is a

vector (ρ1, ..., ρm) of rewards for all tasks in T . We say that task j is exclusive if

there is a single worker who can complete the task, aj = 1.

25

Proposition 2 There exists a non-contingent reward scheme if and only if there

is no exclusive task.

Proposition 2 shows that the planner can give incentives to the workers to select

his favorite task allocation, by assigning higher non-contingent rewards to harder

tasks. However, Proposition 2 only shows that one can construct a finite reward

scheme, where the ratios between the rewards
ρj
ρk

are bounded. The proof does not

provider any guidance on the mimimal rewards which can be used.

To get a better grasp of the minimal rewards that the planner can use, we

turn to the ranked task model, and obtain the following characterization of non-

contingent rewards implementing the planner’s optimal task allocation when m =

3.

Proposition 3 Consider the ranked task model with m = 3. If task t1 is not

exclusive, the planner can implement her first-best task allocation by selecting

ρ1 = ρ2
a1(a2 − 1)

a2(a1 − 1)
,

ρ2 = ρ3
a22(a

2
3 + 2a2 − a1)

a23(a
2
2 + 2a3 − a1)

,

ρ3 = 1.

If task t1 is exclusive, the planner cannot implement her first-best task allocation.

Proposition 3 provides exact values on the minimal ratios between rewards

which give incentives to the workers to select the planner’s optimal task allocation.

Unfortunately, the computations cannot easily be extended beyond three tasks.

6.3 Comparative statics of the number of workers

We now show that the misalignment of the incentives of the planner and of

the workers can lead to counter-intuitive comparative statics effects. While an

increase in the number of workers always results in a decrease in the expected

time of completion in the planner’s problem, it may lead to an increase in the

26

m

n

m III

II

I

Figure 2: An example of suitability graph

expected time of completion in the MPE of the workers’ game. This striking result

is illustrated in the following example.

Example 1 Suppose that there are three tasks and the suitability graph is given

by Figure 2

There are m agents who can work on tasks 1 and 2, n agents on tasks 1 and 3

and m agents only on task 3. We have a1 = m < a2 = a3 = m + n. We suppose

that the exogenous ranking of tasks is given by 3 ≺ 2 ≺ 1.15

Consider an agent who can work on tasks 1 and 2. After task 1 is completed,

workers who can work on both tasks are indifferent between tasks 2 and 3 and, by

the tie-breaking rule, choose to work on task 3. We thus have

U1(−1) =
1

2m+ n
+

m+ n

2m+ n

1

m+ n
.

After task 2 is completed, m + n workers work on task 3 and m workers on

task 1, and hence the expected utility of a worker who can work on 1 is given by

U1(−2) =
1

2m+ n
+

m+ n

2m+ n

1

m
.

So the workers who can work on 1 and 2 prefer to work on 2.

15Notice that the suitability graph satisfies Union Size Invariance, Submodularity and Increas-
ing Differences.

27

m

n

m+1 III

II

I

Figure 3: An example of suitability graph with an additional worker

Consider next a worker who can work both on 2 and 3. After 2 is completed,

she gets an expected payoff

U2(−2) =
1

2m+ n
+

m

2m+ n

1

n+m
=

1

n+m
,

whereas, after 3 is completed, all workers work on task 2 and she obtains an

expected payoff

U2(−3) =
1

n+m
.

So, workers are indifferent between working on tasks 2 and 3 and, by the exogenous

ranking condition, choose to work on task 2.

The expected time of completion of the project is thus given by:

V =
1

2m+ n
+

m+ n

2m+ n
[

1

2m+ n
+

m

2m+ n

1

m+ n
+

m+ n

2m+ n

1

m
]

+
m

2m+ n
[

1

m+ n
+

1

m
]

Next, suppose that there is one additional worker who can work on task 3, so

that the suitability graph is now given by Figure 3

We compute the expected utilities of an agent who can work on two tasks after

28

each task has been completed as

U1(−2) =
1

2m+ n+ 1
+

m+ n+ 1

2m+ n+ 1

1

m

>
1

2m+ n+ 1
+

m+ n+ 1

2m+ n+ 1

1

m+ n

= U1(−1),

U2(−3) =
1

m+ n

>
1

2m+ n+ 1
+

m

2m+ n+ 1

1

m+ n+ 1

= U2(−2)

Hence, workers who can work on tasks 1 and 2 still work on 2 while workers

who can work both on 2 and 3 are no longer indifferent, and strictly prefer to work

on task 3.

This results in an expected time of completion given by

V ′ =
1

2m+ n+ 1
+

m

2m+ n+ 1
[

1

2m+ n+ 1
+

m

2m+ n+ 1

1

m+ n+ 1
+

m+ n+ 1

2m+ n+ 1

1

m
]

+
n+m+ 1

2m+ n+ 1
[

1

m+ n+ 1
+

1

m
]

It is easy to check that for any m ≤ n, V ′ > V . Increasing the number of

agents results in an increase in the expected time of completion of the project and

hence a decrease in the value of the planner. To understand this result, note that,

after task 3 is completed, the planner faces a long expected completion time as all

m+ n+ 1 remaining workers first work on task 2, and then m workers on task 1.

By contrast, if task 2 is completed, the 2m + n + 1 workers simultaneously work

on both tasks, m on task 1 and m + n + 1 on task 3. The addition of a single

worker who can work on 3 yields a drastic change in the behavior of the n workers

who move from working on task 2 to working on task 3. Even though there is

one additional worker, this drastic change in the workers’ behavior results in an

increase in the expected time of completion of the entire project.

29

6.4 Price of anarchy

We can measure the efficiency loss in the worker’s game by the price of anarchy,

the ratio of the expected completion time under the planner’s optimal policy and

in the workers’ game. When there are only two tasks, we let B1, B2 and B12 denote

the set of workers who can work only on task 1, only on task 2 and on both tasks,

with cardinality b1, b2 and b12 respectively, and we let βi =
bi
n
denote the proportion

of workers in each of the three sets. The price of anarchy is given by

PA = lim
n→∞

max
b1,b2,b12|b1+b2+b12=n

ETw(n)

ETp(n)

where ETp(n) and ETw(n) denote the expected completion time of the project in

the planner’s optimal policy and in the worker’s game. Let b1 ≥ b2. By Lemma 2,

the planner assigns workers in B12 to work on task 2 while in the workers’ game,

these workers work on task 1. Hence

ETw(n)

ETp(n)
=

1 + (b1 + b12)/(b2 + b12) + b2/(b1 + b12)

1 + (b2 + b12)/(b1 + b12) + b1/(b2 + b12)

Proposition 4 When m = 2, the price of anarchy is given by

PA =
1

2(
√
2− 1)

≈ 1.207

Proposition 4 shows that the misalignment of the workers and planner’s incen-

tives can result at most in an additional expected time of completion of 20% when

there are two tasks. When the number of tasks increases, the expected loss goes

up, but it becomes impossible to obtain an exact formula for the price of anarchy.

However, in the ranked tasks model, we obtain an upper bound on the price of

anarchy, for any number m of tasks:

Proposition 5 In the ranked tasks model, the price of anarchy satisfies

PA ≤ max
α∈[0,1]

m− 1 + α

αm+ (1− α)m
.

The upper bound (which is exact when the number of tasks is equal to 2), is

30

not very tight when the number of tasks increases. However, as αm+(1−α)m ≥ 1

for all m,α, we have

PA ≤ m− 1 + α,

establishing that the price of anarchy is linear in the number of tasks. Hence, as

the number of tasks grows, the price of anarchy grows at a rate which is at most

linear in the number of tasks.

7 Conclusions

In this paper, we study a dynamic stochastic task allocation problem when

there is a fixed bipartite network associating workers to tasks. We analyze the

optimal policy of a planner whose objective is to minimize the expected time of

completion of all tasks, and a game played by workers who independently choose

their tasks and are rewarded each time a task is completed. We show that both

the planner’s and the worker’s problems are NP-hard and characterize networks

for which the planner’s and workers’ policies are stationary. When policies are

stationary, the planner prefers the workers to start with the hardest tasks, whereas

workers always prefer to start with easier tasks. Examples of situations where

policies are stationary are nested tasks (where tasks can be ranked by difficulty

and workers by skills) and generalist-specialists models where some workers can

work on all tasks and other workers are specialized on a single task. We show that

the policy of the planner and the outcome of the workers’ game only coincide when

the bipartite network satisfies a strong symmetry condition. Differential rewards

can be used to implement the planner’s optimal task allocation and we show that

non-contingent rewards, which are independent of the set of remaining tasks, can

be used as long as there is no task that a single agent can complete.

Our analysis thus provides a strong contrast between the outcome of the cen-

tralized optimization problem of the planner and the outcome of the decentralized

game of task choice of the workers. However, we are aware that our analysis relies

31

on strong assumptions on the model. What happens if workers are heterogeneous

and have different possibly complementary skills? What if some tasks take more

time than others? What happens if, in addition to the task choice, workers endoge-

nously choose their level of effort? We plan to tackle these important questions in

future research.

References

Baccara, Mariagiovanna, SangMok Lee, and Leeat Yariv (2023) “Task allocation

and on-the-job training,” Journal of Economic Theory, Vol. 207, p. 105587.

Baccara, Mariagiovanna and Leeat Yariv (2023) “Dynamic matching,” in Federico

Echenique, Nicole Immorlica, and Vijay V. Vazirani eds. Online and Matching-

Based Market Design: Cambridge University Press.

Bernstein, Shai and Eyal Winter (2012) “Contracting with heterogeneous external-

ities,” American Economic Journal: Microeconomics, Vol. 4, No. 2, pp. 50–76.

Dasaratha, Krishna, Benjamin Golub, and Anant Shah (2023) “Equity Pay in

Networked Teams,” Available at SSRN 4452640.

Di Stefano, Giada and Maria Rita Micheli (2022) “To Stem the Tide: Organiza-

tional Climate and the Locus of Knowledge Transfer,” Organization Science.

Doval, Laura (2018) “Whether or not to open Pandora’s box,” Journal of Economic

Theory, Vol. 175, pp. 127–158.

(2022) “Dynamically stable matching,” Theoretical Economics, Vol. 17,

No. 2, pp. 687–724.

Eliaz, Kfir, Daniel Fershtman, and Alexander Frug (2021) “On the Opti-

mal Scheduling of Attention,”Technical report, CEPR Discussion Paper No.

DP16364.

Fershtman, Daniel and Alessandro Pavan (2022) “Searching for arms: Experimen-

tation with endogenous consideration sets,”Technical report, Mimeo.

32

Gale, David and Lloyd S Shapley (1962) “College admissions and the stability of

marriage,” The American Mathematical Monthly, Vol. 69, No. 1, pp. 9–15.

Hart, Oliver and John Moore (2005) “On the design of hierarchies: coordination

versus specialization,” Journal of political Economy, Vol. 113, No. 4, pp. 675–

702.

Jeloudar, Mobin Y, Irene Lo, Tristan Pollner, and Amin Saberi (2021) “Decen-

tralized Matching in a Probabilistic Environment,” in Proceedings of the 22nd

ACM Conference on Economics and Computation, pp. 635–653.

Kelso, Jr Alexander S and Vincent P Crawford (1982) “Job matching, coalition

formation, and gross substitutes,” Econometrica: Journal of the Econometric

Society, pp. 1483–1504.

Khamis, Alaa, Ahmed Hussein, and Ahmed Elmogy (2015) “Multi-robot task

allocation: A review of the state-of-the-art,” in Anis Koubâa and J. Ramiro

Mart́ınez-de Dios eds. Cooperative robots and sensor networks 2015: Springer,

pp. 31–51.

Knorr-Cetina, Karin (1995) “How superorganisms change: Consensus formation

and the social ontology of high-energy physics experiments,” Social studies of

science, Vol. 25, No. 1, pp. 119–147.

Kranton, Rachel E and Deborah F Minehart (2001) “A theory of buyer-seller

networks,” American economic review, Vol. 91, No. 3, pp. 485–508.

Loch, Christoph H, Christian Terwiesch, and Stefan Thomke (2001) “Parallel and

sequential testing of design alternatives,” Management Science, Vol. 47, No. 5,

pp. 663–678.

Pinedo, Michael L. (2022) Scheduling: Theory, Algorithms, and Systems: Springer,

6th edition.

Pinedo, Michael and Josh Reed (2013) “The Least flexible job first rule in schedul-

ing and in queueing,” Operations Research Letters, Vol. 41, No. 6, pp. 618–621.

33

Rizk, Yara, Mariette Awad, and Edward W Tunstel (2019) “Cooperative heteroge-

neous multi-robot systems: A survey,” ACM Computing Surveys (CSUR), Vol.

52, No. 2, pp. 1–31.

Tuertscher, Philipp, Raghu Garud, and Arun Kumaraswamy (2014) “Justification

and interlaced knowledge at ATLAS, CERN,” Organization Science, Vol. 25,

No. 6, pp. 1579–1608.

Vishwanath, Tara (1992) “Parallel search for the best alternative,” Economic The-

ory, pp. 495–507.

Weitzman, Martin L (1979) “Optimal search for the best alternative,” Economet-

rica, pp. 641–654.

34

8 Appendix A: Proofs

Proof of Theorem 1

In the first part of the proof, we show that, under Union Size Invariance, the

vector a = (a1, ..., am), which denotes the number of workers who can work on

each task in T (G0), is sufficient to describe any suitability graph G. Any state

in the Markov decision process is generated by a subvector of a. We first prove

the following Lemma, showing the existence of a family of functions gk where k

denotes the number of tasks (or the dimension of a subvector of a).

Lemma 6 Under Union Size Invariance, there exists a family of functions gk :

ℜk → ℜ for k ∈ {1, ...,m} that are symmetric and weakly increasing in all their

arguments such that, for any set of k tasks S = {t1, t2, .., tk} in T ,

aS = gk(a1, ..., ak).

Proof: Let A denote the collection of all sets Aj for j ∈ T (G0). We first show

that the function gk is uniquely defined for the values (a1, ..., ak) ∈ ℜk which can

be generated by k subsets of A. Formally, let

Dk = {(a1, ..., ak) ∈ Nk|∃{A1, ..., Ak} ⊆ A, |Aj| = aj∀j ∈ {1, .., k}}.

Hence, for any given G0, D
k denotes the set of all vectors formed of the cardinals

of k sets in A. We will show that gk is uniquely defined on Dk.

To this end, consider two distinct collections of sets {A1, ..., Ak} ⊆ A, and

{B1, ..., Bk} ⊆ A corresponding to different tasks such that aj = bj for all j =

1, ..., k. We consider successive changes from {a1, ..., ak} to {b1, ..., bk}. Consider

first {a1, a2, .., ak} and {b1, a2, ..., ak}. Let t1 and t2 be the tasks corresponding to

a1 and b1. Applying Union Size Invariance by taking a1 = b1 and the union S of

tasks corresponding to a2, .., ak

gk(a1, .., ak) = aS∪1 = aS∪2 = gk(b1, a2, ..., ak).

35

Repeating the argument successively, we obtain

gk(a1, ..., ak) = gk(b1, ..., bk).

This shows that for any two collection of tasks which result in the same vector

in Dk, the function gk assigns the same value.

Next observe that, because the union of sets is commutative, for any permuta-

tion σ, S = ∪k
j=1Aj = ∪k

j=1Aσ(j) so that

gk(a1, .., ak) = aS = gk(aσ(1), ..., aσ(k)),

and the function gk is symmetric.

Finally, consider two collections of k sets {A1, ..., Ak}, {B1, ..., Bk} where |Aj| =

|Bj| for all j > 1 and a1 < b1. Let t1 be the task corresponding to a1, t2 the

task corresponding to b1. By Union Size Invariance, taking the union of tasks

S = ∪j ̸=Jtj, we have

gk(a1, ..., ak) = aS∪1 ≤ aS∪2 = gk(b1, a2, ..., ak).

The argument can be repeated for any argument of the function gk showing that

the function gk is weakly increasing in all its arguments. ■

Lemma 6 constructs a collection of functions gk : ℜk → ℜ which we now use

to compute the planner’s expected value. Notice that the functions gk are only

uniquely defined for collections of integers which can be generated by the cardinals

of the sets in A,

Dk = {(a1, ..., ak) ∈ Nk|∃{A1, ..., Ak} ⊆ A, |Aj| = aj∀j ∈ {1, .., k}}.

For any vector (x1, .., xk) ∈ ℜk \ Dk, Lemma 6 does not place any restriction

on the value of the function gk.

We now use Lemma 6 to simplify the planner’s problem and write it only as

a function of the number of agents who can work on every target ak, and not as

36

a function of the number of agents who can work on any collection of targets aS

for S ∈ T . The planner’s policy can thus be conditioned on the vector a rather

than on the feasibility graph G. We now consider as a state space the set of all

subvectors of the vector a , and we write the Bellman equation as:

V (a) = − 1

λgm(a)
+ max

r

∑
j∈T (a)

rj
gm(a)

V (a−j). (5)

In the second part of the proof, we will show that the value V (a) is increasing

in all the components of the vector a.

We next show that the expected time of completion of all tasks is decreasing

after a task has been completed or, alternatively, that the expected value of the

planner is always higher after the completion of any task

Lemma 7 For any vector a and any target j ∈ T (a), V (a) ≤ V (a−j).

Proof: The proof is by induction on the number of tasks. Clearly if m = 1,

V (a−1) = 0 > V (a).

Now consider a problem with m tasks and let (r1, ..., rm) be the optimal action

of the planner. Suppose that task j has been completed, and consider the following

action for the planner at state a−j:

• For any task k ̸= j, let rk agents work on task j

• All rj agents who initially worked on task k are now assigned to a ”useless”

task with value 0.

The value of this action r is given by

v(a−j, r) = − 1

λgm(a)
+
∑
k ̸=j

rk
gm(a)

V (a−k,j) +
rj

gm(a)
V (a−j).

37

By the induction hypothesis, V (a−k,j) ≤ V (a−j). Hence

V (a) = − 1

λgm(a)
+
∑
j

rj
gm(a)

V (a−j)

≤ − 1

λgm(a)
+
∑
k ̸=j

rk
gm(a)

V (a−k,j) +
rj

gm(a)
V (a−j)

= v(a−j, r)

≤ V (a−j)

where the last inequality is due to the fact that r is not necessarily the optimal

action of the planner at a−j. ■

We are now ready to prove that V (a) is increasing in all its arguments. The

proof is by induction on the number of tasks. If there is only one task

V (a) = − 1

λa

is clearly increasing in a. Now suppose that for any a with m − 1 tasks, V (a) is

increasing in all its arguments and consider a problem with m tasks.

After any task j has been completed, the problem faced by the planner is a

problem with m− 1 tasks, which is thus increasing in all its arguments. Consider

then two tasks j, k with aj < ak. Because a−j > a−k, V (a−j) > V (a−k). By

Lemma 1, this implies that the planner ranks the tasks according to the number

of workers who can perform them and that the optimal policy of the planner is to

assign workers to the hardest tasks first

Hence, for any j, rj is the number of agents who can perform task j but not

any of the hardest tasks. Ranking the tasks according to the number of agents

who can perform them, with a1 ≤ a2 ≤ a3... ≤ am, we thus obtain

rj = |A1 ∪ ...Aj| − |A1 ∪ ...Aj−1| = gj(a1, ..aj)− gj−1(a1, .., aj−1).

38

We thus obtain

V (a) = − 1

λgm(a)
+

m∑
j=1

gj(a1, ..., aj)− gj−1(a1, ..., aj−1)

gm(a)
V (a−j).

Now consider two vectors a = (a1, ..., am) and b = (b1, ..bm) where a < b, i.e.,

such that aj ≤ bj for all j and ak < bk for some k.

V (a)− V (b) = − 1

λgm(a)
+

1

λgm(b)
+

m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(a)
V (a−j)

−
m∑
j=1

gj(b1, .., bj)− gj−1(b1, ..., bj−1)

gm(b)
V (b−j)

= − 1

λgm(a)
+

1

λgm(b)
+

m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(a)
V (a−j)

−
m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(b)
V (a−j) +

m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(b)
V (a−j)

−
m∑
j=1

gj(b1, .., bj)− gj−1(b1, ..., bj−1)

gm(b)
V (b−j)

= V (a)[1− gm(a)

gm(b)
] +

m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(b)
V (a−j)

−
m∑
j=1

gj(b1, .., bj)− gj−1(b1, ..., bj−1)

gm(b)
V (b−j).

As a−j ≥ b−j for all j (with strict inequality for some k), and a−j and b−j are

vectors of dimension m− 1, by the induction hypothesis, V (a−j) ≥ V (b−j) for all

j with strict inequality for some k. Hence

V (a)− V (b) > V (a)[1− gm(a)

gm(b)
] +

m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(b)
V (b−j)

−
m∑
j=1

gj(b1, .., bj)− gj−1(b1, ..., bj−1)

gm(b)
V (b−j)

39

Next, we develop

m∑
j=1

gj(a1, .., aj)− gj−1(a1, ..., aj−1)

gm(b)
V (b−j) =

m−1∑
j=1

gj(a1, .., aj)

gm(b)
(V (b−j)−V (b−(j+1))+

gm(a)

gm(b)
V (b−m),

so that

V (a)− V (b) > V (a)(1− gm(a)

gm(b)
) +

m−1∑
j=1

(gj(a1, .., aj)− gj(b1, ..., bj)

gm(b)
(V (b−j)− V (b−(j+1))

+
(gm(a)− gm(bfb)

gm(b)
v(b−m)

Now, because the function gj is weakly increasing in all its arguments and

(b1, ..., bj) ≤ (a1, ..., aj) for all j, gj(a1, .., aj)− gj(b1, ..., bj) ≥ 0. In addition, as all

tasks are ordered by increasing number of agents who can perform them, bj+1 ≥ bj

so that b−j ≥ b−(j+1). By the induction hypothesis, V (b−j) ≥ V (b−(j+1)) (with

strict inequality for some k), so that

V (a)− V (b) > V (a)(1− gm(a)

gm(b)
)− (1− (gm(a)

gm(b)
)V (b−m).

Hence

V (a)− V (b) > (1− gm(a)

gm(b)
)(V (a)− V (b) + V (b)− V (b−m))

so that

V (a)− V (b) >

gm(a)
gm(b)

− 1

1 + gm(a)
gm(b)

(V (b−m)− V (b)).

By Lemma 7, V (b−m)− V (b) > 0 so that

V (a)− V (b) > 0,

showing that V is increasing in all its arguments. At any state a, if aj < ak then

a−j > a−k and hence V (a−j) > V (a−k). This shows that the optimal action is to

assign a worker to the hardest task at any state a, and completes the proof of the

40

Theorem. ■

Proof of Theorem 2

The proof of Theorem 2 follows the same structure as the proof of Theorem

1. We first use Union Size Invariance and Strong Union Size Difference Invariance

to construct functions gk(a1, ..., ak) which generate the number of workers working

on any subset S of k tasks and satisfies two monotonicity properties. In a second

step of the proof, we show that the value of a worker can never decrease when

the number of tasks increases. Finally, we show that the value of a worker is

higher when she completes a task with a larger number of workers. This last step

guarantees that a worker prefers to start with the easiest task, as this results in a

smaller number of competitors in subsequent periods.

As Union Size Invariance holds, there exist functions gk which are symmetric

and increasing such that, for any collection S of k tasks S = 1, 2, ..., k,

aS = gk(a1, .., ak).

Submodularity implies that, for any ordered set of tasks (a1, ..., am)

gm−j+1(aj, ..., am)− gm−j(aj+1, ..., am) ≤ gm−j(aj+1, ..., am)− gm−j−1(aj+2, ..., am).

By a repeated application of this inequality, for any two tasks j, k with j < k,

gm−j+1(aj, ..., am)− gm−j(aj+1, ..., am) ≤ gm−k+1(ak, ..., am)− gm−k(ak+1, ..., am).

Finally, by Increasing Differences, for any fixed task l, any two tasks j, k with

ak, al ≥ aj and any set of s tasks S such that ap ≥ al for all p ∈ S, we have:

gs+2(al, aj, aS)− gs+1(aj, aS) ≤ gs+2(al, ak, aS)− gs+1(ak, aS).

By a repeated application of this inequality, for any fixed task l and any two

41

vectors a, b of dimension k such that bp ≥ ap ≥ aj for all p ∈ S, we obtain

gk+1(aj, a)− gk(a) ≤ gk+1(aj,b)− gk(b) (6)

Next, we consider a worker i and, in order to ease notation, denote her value U

dispensing with the index i. We first show that, if workers play simple strategies,

the workers’ utility is weakly higher at G than after one task has been completed.

Lemma 8 For any suitability graph G and any target j ∈ T (G), when all workers

play simple strategies at G, U(G) ≥ U(G− j).

Proof: The proof is by induction on the number of tasks. If G has only one task,

U(G− 1) = 0 ≤ U(G).

Suppose that G has m tasks and that the inequality holds for any G with less than

m tasks.

If the worker is inactive at G − j, then U(G) ≥ 0 = U(G − j). So suppose that

the worker is active at G − j. Let (r1, ..., rm) denote the number of workers who

work on each task in the MPE at G. Furthermore let rj,k denote the number of

workers who initially work on task j and move to task k after j has been completed.

Because all strategies are simple, the ranking of tasks at any suitability graph G is

given by the ranking when there are only two tasks left. Hence, at G, every agent

works on the easiest task. We conclude that, if a worker works on task k ̸= j at

G, she will continue to work on task k after j has been completed at G− j. The

number of agents working on task k ̸= j at G−j is thus rk+rj,k. We now compute

U(G)− U(G− j) =
1

gm(a)
+
∑
k

rk
gm(a)

U(G− k)− 1

g(a−j)
−
∑
k ̸=j

rk + rj,k
gm−1(a−j)

U(G− j, k),

= U(G)(1− gm(a)

gm−1(a−j)
) +

1

gm−1(a−j)
+
∑
k

rk
gm−1(a−j)

U(G− k)

− 1

g(a−j)
−

∑
k ̸=j

rk + rj,k
gm−1(a−j)

U(G− j, k)

= U(G)(1− gm(a)

gm−1(a−j)
) +

∑
k

rk
gm−1(a−j)

U(G− k) +
rj

gm−1(a−j)
U(G− j)

−
∑
k ̸=j

rk
gm−1(a−j)

U(G− j, k)−
∑
k ̸=j

rj,k
gm−1(a−j)

U(G− j, k).

42

By the induction hypothesis, U(G− k) ≥ U(G− k, j) for all k. Hence

U(G)−U(G−j) ≥ U(G)(1− gm(a)

gm−1(a−j)
)+

rj
gm−1(a−j)

U(G−j)−
∑
k ̸=j

rj,k
gm−1(a−j)

U(G−j, k).

Applying again the induction hypothesis,

U(G)− U(G− j) ≥ U(G)(1− gm(a)

gm−1(a−j)
) +

rj −
∑

j ̸=k rj,k

gm−1(a−k)
U(G− j).

Now notice that the number of workers who become inactive after task j is com-

pleted is given by

gm(a)− gm−1(a−j) = rj −
∑
k ̸=j

rj,k,

Hence

U(G)− U(G− j) ≥ U(G)(1− gm(a)

gm−1(a−j)
)− (1− gm(a)

gm−1(a−j)
)U(G− j).

so that

(U(G)− U(G− j))fracgm(a)gm−1(a−j)) ≥ 0,

completing the proof of the Lemma. ■

Because workers can work on different tasks, we need to keep track of those

tasks on which worker i can work in any suitability graph. Hence, as opposed to the

planner’s problem, the relevant state for worker i at G is not the unordered vector

of the number of agents who can work on all remaining tasks, but the ordered

number of workers who can work on each and every task. Let A = {A1, ..., Am} be

the set of workers who can work on each task at G0. We fix an ordering of tasks.

We suppose that A is ordered so that whenever aj < ak, j < k and when aj = ak,

j < k if j precedes k in the given, exogenous ranking of tasks, which is used to

break ties.

When agents adopt simple strategies and always work on the easiest task first,

we can characterize the state (the suitability graph G) by a vector of dimension

m, a(a1, ..., am) where aj ∈ {0, aj}. We interpret aj = 0 to mean that task j

43

has been completed. The vector a thus keeps track of the identity of the tasks

which are left and the number of workers who can work on each of the remaining

tasks. Given the ordering of tasks, whenever j ≤ k and aj > 0, ak > 0 we must

have aj ≤ ak. As before, for any task j such that aj > 0, we denote by a−j the

suitability graph obtained after task j has been completed, i.e., the vector obtained

from a by replacing aj with 0.

In order to show that worker i always wants to work on the easiest task at G,

we consider two tasks on which worker i can work, j and k with j < k which are

consecutive for i, in the sense that there is no other task in {j+1, ..k−1} on which

worker i can work. The strategy of the proof is to show that U(a−k) ≥ U(a−j), so

that agent i always prefers to work on task k.

The proof is by induction on the number of tasks. Suppose that there are only

two tasks. If worker i can work on both tasks, U(a−2) = U(a1, 0) = 1
a1

≥ 1
a2

=

U(0, a2) = U(a−1). Worker i thus prefers to start with the easiest task.

Now consider a suitability graph G where there are m + 1 tasks, and suppose

that, for any state with m tasks or less, every player plays a simple strategy and

chooses to work on the easiest task first. Consider a worker i and two tasks j and k

such that tj, tk ∈ Ti (worker i can work on both tasks) but tl /∈ Ti for all j < l < k

(there is no task ranked between j and k on which i can work). After tasks j and

k are completed, there are only m tasks left and, by the induction hypothesis, all

players play simple strategies and the statesG−j andG−k are characterized by the

vector a−j = (a1, ..., aj−1, 0, aj+1, ..., am) and a−k = (a1,, ak−1, 0, ak+1, ..., am).
16

Our objective is to show U(a−k)− U(a−j) ≥ 0. We decompose the difference as:

U(a−k)− U(a−j) = U(a1,, ak−1, 0, ak+1, ..., am)− U(a1, ..., aj−1, 0, aj+1, ..., am),

= U(a1,, ak−1, 0, ak+1, ..., am)− U(a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am)

− +U(a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am)− U(a1, ..., aj−1, 0, aj+1, ..., am).

The vector (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) is constructed by (i) using the

same ordered sequence as in a−j, but (ii) having task k (rather than task j) com-

16The notations are easily adapted if j = 1 or k = m.

44

pleted. When comparing the vector (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) with

the vector a−k, the set of tasks remains identical, but the number of workers work-

ing on each task has changed: the number of workers working on tasks 1, ...j − 1

and k + 1, ...,m remains identical, but the number of workers working on tasks j

to k − 1 has increased, from (aj, ..., ak−1) to (aj+1, ..., ak). When comparing the

vector (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) with the vector a−j, the ordered

vector of the number of agents working on each task remains constant, equal to

(a1, ..., aj−1, aj+1, ..., am) but the set of tasks has changed: task k has been com-

pleted in the vector (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) and task j in the vec-

tor a−j. The number of workers working on tasks 1, ..., j − 1 and k + 1, ...,m is

the same, but in the vector (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am), there are al+1

workers working on tasks l = j, ..., k − 1.

We finally note that the state (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) does

not belong to the state space, as it cannot be obtained as a sub-graph of the

initial suitability graph G. We thus need to expand the state space to include

the state (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) and all vectors which can be ob-

tained from (a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) after replacing some al with

0 as tasks are completed. We assume that, in the expanded state space, all workers

play simple strategies, starting with the easiest task.

Claim 1: We have: U(a1,, ak−1, 0, ak+1, ..., am)−U(a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am) ≥

0.

Proof of the Claim:

To simplify notation, we will let c = (a1,, ak−1, ak+1, ..., am) and b = (a1, ..., aj−1, aj+1, ..., ak−1, ak, ak+1, am)

denote the two m− 1 dimensional vectors obtained after elimination of task k.

The proof is by induction on the number of tasks. If we only have one task

l and l ≤ j − 1 or l ≥ k + 1, then U(b) = U(c). If j ≤ l ≤ k then cl = al and

bl = al+1 so U(c) = 1
al
≥ 1

al+1
= U(b). We have

45

U(c)− U(b) =
1

g(c)
+
∑
j

rj
g(c)

U(c− j)− 1

g(b)
−
∑
j

r′j
g(b)

U(b− j),

where r′j is the number of workers who work on task j at state b.

Now,

U(c)− U(b) =
1

g(c)
− 1

g(b)
+
∑
j

rj
g(c)

U(c− j)

−
∑
j

rj
g(b)

U(c− j) +
∑
j

rj
g(b)

U(c− j)−
∑
j

r′j
g(b)

U(b− j),

= U(c)(1− g(c)

g(b)
) +

∑
j

rj
g(b)

U(c−j)−
∑
j

r′j
g(b)

U(b−j),

= U(c)(1− g(c)

g(b)
) +

∑
j

rj
g(b)

U(c− j)

−
∑
j

r′j
g(b)

U(c− j) +
∑
j

r′j
g(b)

U(c− j)−
∑
j

r′j
g(b)

U(b− j).

By the inductive hypothesis, U(c− j) ≥ U(b− j). Hence,

U(c)− U(b) ≥ (1− g(c)

g(b)
)U(c) +

∑
j

rj
g(b)

U(c− j)−
∑
j

r′j
g(b)

U(c− j).

Now recall that

rj = g(aj, ..., am)− g(aj+1, ..., am),

so that

∑
j

(rj − r′j)

g(b)
U(c−j) =

∑
j

g(cj, ..., cm)− g(cj+1, ..., cm)

g(b)
U(c− j)

−
∑
j

g(bj, .., bm)− g(bj+1, ..bm)

g(b)
U(c− j)

Now recall that b = (a1, ..., ak−1, ak+1, .., al) > c = (a1, ..., ak, .., al−1), so that by

46

Strong Union Difference Invariance,

g(bj, .., bm)− g(bj+1, ..bm) ≥ g(cj, ..., am)− g(cj+1, ..., cm).

and as U(c− j) < U(c) by Lemma 8,

g(cj, ..., cm)− g(cj+1, ..., cm)− g(bj, .., bm) + g(bj+1, ..bm)g(b)U(c− j) ≥ (7)

g(cj, ..., cm)− g(cj+1, ..., cm)− g(bj, .., bm) + g(bj+1, ..bm)

g(b)
U(c). (8)

(9)

Summing up over all j,

∑
j

g(cj, ..., cm)− g(cj+1, ..., cm)− g(bj, .., bm) + g(bj+1, ..bm)

g(b)
U(c−j) ≥ g(c)− g(b)

g(b)
U(c−j).

so that

U(c)− U(b) ≥ (1− g(c)

g(b)
)U(c) + (

g(c)− 1

g(b)
)U(c) = 0,

completing the proof of the Claim. ■

Claim 2: We have: U(a1, ..., aj−1, aj+1, ..., ak−1, ak, 0, ak+1, am)−U(a1, ..., aj−1, 0, aj+1,, am) ≥

0.

Proof of the Claim: Fix an m dimensional ordered vector (a1, a2,, am) with

al ∈ {0, al}, aj > 0 and ak−1 > 0. The proof will be an induction on the number

of tasks l ̸= k, j for which al ̸= 0 (i.e., the number of tasks different from j and

k on which agent i can work.) We construct different m + 1-dimensional vectors

based on the vector a = (a1, ..., am).

First, let b(a) = (a1, a2, ..., ak−1, 0, ak, ..., am), namely bl = al for l ≤ k − 1,

bk = 0, bl = al−1 for l ≥ k + 1.

Second, let c(a) = (a1, a2, ..., aj−1, 0, aj, ..., am), namely cl = al for l ≤ j − 1,

cj = 0, cl = al−1 for l ≥ j + 1.

The vector b is thus obtained by letting bk = 0 while the vector c is obtained by

47

letting cj = 0. The statement of the Claim can be rewritten as : U(b)− U(c) ≥ 0

whenever al > 0 for all l.

Third, let b1(a) = (a1, a2, ..., ak−2, 0, 0, ak, ..., am−1), namely b1l = al for l ≤ k−2,

b1k−1 = b1k = 0, b1l = al−1 for l ≥ k + 1.

Fourth, let c1(a) = (a1, a2, ..., aj−1, 0, aj, ..., ak−2, 0, ak, ..., am−1), namely c1l = al

for l ≤ j− 1, c1j = 0, c1l = al−1 for j+1 ≤ l ≤ k− 1, c1k = 0, c1l = al−1 for l ≥ k+1.

17

The vector b1 is obtained from the vector b after elimination of the task k − 1

while the vector c1 is obtained from the vector c after elimination of the task k.

Fifth, let b2(a) = b(a) = (a1, a2, ..., aj−1, 0, aj+1, ..., ak−1, 0, ak, ..., am), namely

b2l = al for l ≤ j − 1, b2j = 0, b2l = al for j + 1 ≤ l ≤ k− 1, bk2 = 0 and b2l = al−1 for

l ≥ k + 1.18

Sixth, let c2(a) = (a1, a2, ..., aj−1, 0, 0, aj+1, ..., am), namely c2l = al for l ≤ j−1,

c2j = c2j+1 = 0, c2l = al−1 for l ≥ j + 2

The vector b2 is obtained from the vector b after elimination of the task j while

the vector c2 is obtained from the vector c after elimination of the task j + 1.

Seventh, let b̂(a) = (a1, a2, ..., aj−1, 0, aj+1, ..., ak−2, 0, 0, ak, ..., am−1), namely

b̂l = al for l ≤ j − 1, b̂j = 0,b̂l = al for j + 1 ≤ l ≤ k − 2, b̂k−1 = b̂k = 0

b̂l = al−1 for l ≥ k + 1.19

Eighth, let ĉ(a) = (a1, a2, ..., aj−1, 0, 0, aj+1, ..., ak−2, 0, ak, ..., am−1), namely ĉl =

al for l ≤ j − 1, ĉj = ĉj+1 = 0,ĉl = al−1 for j + 2 ≤ l ≤ k − 1, ĉk = 0 ĉl = al−1 for

l ≥ k + 1.20

The vector b̂ is obtained from the vector b after elimination of tasks j and k−1

while the vector ĉ is obtained from the vector c after elimination of tasks k and

j + 1.

We now prove that U(b) ≥ U(c) in several steps.

17If j +1 > k− 1, then clearly there is no task l such that j +1 ≤ l ≤ k− 1 and the definition
of the vector must be adapted accordingly.

18Again, if j + 1 > k− 1, then there is no task l such that j + 1 ≤ l ≤ k− 1 and the definition
of the vector must be adapted accordingly.

19Whenever j +1 > k− 2, the definition must be adapted. If j = k− 1, then b̂j = b̂k−1 = 0, if
j = k − 2, then there is no l such that j + 1 ≤ l ≤ k − 2.

20Whenever j +2 > k− 1, the definition must be adapted. If j = k− 1, then ĉj+1 = ĉk = 0, if
j = k − 2, then there is no l such that j + 2 ≤ l ≤ k − 1.

48

Step 1: For any two vectors b̂ and ĉ generated from a, U(b̂(a)) = U(ĉ(a)).

By induction on the number of tasks in a (different from aj, ak−1)) for which

al > 0. If there is no task different from aj, ak−1), we immediately have: b̂ = ĉ =

(0, 0, ..., 0) Now suppose that b̂ = ĉ for all a with less than m active tasks. Now

notice that b̂l = b̂l for l ≤ j − 1 and l ≥ k + 1, that b̂j = b̂k = ĉj = ĉl = 0. Hence,

b̂ and ĉ only differ in the number of workers for tasks that i cannot work on. This

implies that either i can work on some task both at b̂ and ĉ or she cannot work on

any task at b̂ and ĉ. In the latter case, U(b̂(a)) = 0 = U(ĉ(a)). In the former case,

using the recursive formula:

U(b̂(a))− U(ĉ(a)) =
∑
l≤j−1

rl(U(b̂(a)− l)− U(ĉ(a)− l)) +
∑

j+1≤l≤k−2

rl(U(b̂(a)− l)− U(ĉ(a))− (l + 1))

+
∑
l≥k

rl(U(b̂(a)− (l + 1))− U(ĉ(a)− (l + 1)))

But, by construction, for any l ≤ j − 1, b̂(a − l) = b̂(a−l) and ĉ(a − l) = ĉ(a−l).

For any j + 1 ≤ l ≤ k − 2, b̂(a − l) = b̂(a−l) and ĉ(a − (l + 1)) = ĉ(a−l). For any

l ≥ k, b̂(a− (l + 1)) = b̂(a−l) and ĉ(a− (l + 1)) = ĉ(a−l). Hence,

U(b̂(a))− U(ĉ(a)) =
∑

l ̸=j,k−1

rl(U(b̂(a−l)− U(ĉ(a−l)).

By the induction hypothesis, U(b̂(a−l)− U(ĉ(a−l) = 0, establishing that

U(b̂(a)) = U(ĉ(a)),

completing the proof of Step 1. ■

Step 2: For any vectors b1(a), c1(a), b2(a) and c2(a) generated from a, we have

U(b1)− U(c1) > 0 and

U(b1)− U(c1) + U(b2)− U(c2) ≥ 0.

The proof is again by induction on the number of components of the vector a,

49

different from aj and ak−1 which are different from 0.

Suppose first that all components of a different from aj and ak−1 have value 0.

Then b1l = 0 for all l ̸= j and b1j = aj, c
1
l = 0 for all l ̸= j + 1 and c1j+1 = aj b

2
l = 0

for all l ̸= k − 1 and b2k−1 = ak−1, c
2
l = 0 for all l ̸= k and ck = ak−1. Because

worker i can work on tasks j and k but not on tasks j + 1 and k − 1, we have:

U(b1) = 1
aj
, U(c1) = 0, U(b2) = 0 and U(c2) = 1

ak−1
. Hence U(b1)− U(c1) = 1

aj
> 0

and

U(b1)− U(c1) + U(b2)− U(c2) =
1

aj
− 1

ak−1

≥ 0.

Now, suppose that U(b1)−U(c1)+U(b2)−U(c2) ≥ 0 for any a with less than m

tasks different from aj, ak−1 with a nonzero value. Consider a vector a withm tasks

and compute the difference U(b1a) − U(c1a). Notice that because b1j = aj ̸= 0,

worker i will always be active at b1(a) (and may or may not be active at c1(a).)

Hence

U(b1(a))− U(c1(a)) ≥ 1

g(a−(k−1))
+

∑
l≤j−1

rl(U(b
1(a)− l)− U(c1(a)− l)

+ rj((U(b
1(a)− j)− U(c1(a)− (j + 1)) +

∑
j+1≤l≤k−2

rl((U(b
1(a)− l)− U(c1(a)− (l + 1))

+
∑
l≥k

rl(U(b
1(a)− (l + 1))− U(c1(a)− (l + 1))).

Now, by construction, for l ≤ j− 1, b1(a)− l = b1(a−l) and c
1(a)− l = c1(a−l).

We also have b1(a) − j = b̂(a) and c1(a − (j + 1)) = ĉ(a). For j + 1 ≤ k − 2,

b1(a)− l = b1(a−l) and c
1(a)− (l+1) = c1(a−l). Finally, for l ≥ k, b1(a)− (l+1) =

b1(a−l) and c
1(a)− (l + 1) = c1(a−l). Hence,

U(b1(a))−U(c1(a)) ≥ 1

g(a−(k−1))
+

∑
l ̸=j,k−1

rl(U(b
1(a−l))−U(c1(a−l)))+rj(U(b̂(a))−U(ĉ(a))).

Because, by Step 1, U(b̂(a))− U(ĉ(a)) = 0, we have:

U(b1(a))− U(c1(a)) ≥ 1

g(a−(k−1))
+

∑
l ̸=j,k−1

rl(U(b
1(a−l))− U(c1(a−l))).

50

By the inductive hypothesis, U(b1(a−l)) − U(c1(a−l)) > 0 so that U(b1(a)) −

U(c1(a)) > 0

We also compute the difference U(b2(a))−U(c2(a)). Notice that because c2k =

ak−1 ̸= 0, worker i will always be active at c2(a) (and may or may not be active

at b2(a).) Hence

U(b2(a))− U(c2(a)) ≥ −− 1

g(a−j)
+

∑
l≤j−1

rl(U(b
2(a)− l)− U(c2(a)− l))

+
∑

j+1≤l≤k−2

rl((U(b
2(a)− l)− U(c2(a)− (l + 1))) + rk−1(U(b

2(a)− l)− U(c2(a)− (l + 1)))

+
∑
l≥k

rl(U(b
2(a)− (l + 1))− U(c2(a)− (l + 1))).

Now, by construction, for l ≤ j−1, b2(a)− l = b2(a−l) and c
2(a)− l) = c1(a−l).

For j + 1 ≤ k − 2, b2(a)− l = b2(a−l) and c
2(a)− (l + 1) = c2(a−l). We also have

b2(a−(k−1)) = b̂(a) and c2(a−k = ĉ(a) Finally, for l ≥ k, b2(a)−(l+1) = b2(a−l)

and c2(a)− (l + 1) = c2(a−l). Hence,

U(b2(a))−U(c2(a)) ≥ − 1

g(a−j)
+

∑
l ̸=j,k−1

rl(U(b
2(a−l))−U(c2(a−l)))+rk−1(Ub̂(a)−U(ĉ(a))).

Because, by Step 1, Ub̂(a)− U(ĉ(a)) = 0, we have:

U(b2(a))− U(c2(a)) ≥ − 1

g(a−j)
+

∑
l ̸=j,k−1

rl(U(b
2(a−l))− U(c2(a−l))).

Hence,

U(b1(a))− U(c1(a)) + U(b2(a))− U(c2(a)) ≥ 1

g(a−(k+1))
− 1

g(a−j)

+
∑

l ̸=j,k−1

rl(U(b
1(a−l))− U(c1(a−l)) + U(b1(a−l))− U(c1(a−l))).

Because g(·) is increasing, and a−(k+1) ≤ a−j, g(a(− k + 1)) ≤ g(a−j) so that

51

1
g(a−(k+1))

≥ 1
g(a−j)

. Hence

U(b1(a))−U(c1(a))+U(b2(a))−U(c2(a)) ≥
∑

l ̸=j,k−1

rl(U(b
1(a−l))−U(c1(a−l))+U(b

1(a−l))−U(c1(a−l))).

By the induction hypothesis, U(b1(a−l))−U(c1(a−l))+U(b
1(a−l))−U(c1(a−l)) ≥ 0,

so that

U(b1(a))− U(c1(a)) + U(b2(a))− U(c2(a)) ≥ 0,

completing the proof of Step 2. ■

Step 3: For any vectors b(a) and c(a) generated from a, we have

U(b(a)) ≥ U(c(a)).

The proof is again by induction on the number of components of a different

from aj, ak−1 which have a non zero value. If there is no component with a non

zero value, U(b) = 1
aj

≥ 1
ak−1

= U(c).

Now suppose that for all vectors a with less than m nonzero components

U(b(a)) ≥ U(c(a)) and consider a vector with m nonzero components.

First notice that as bj = aj > 0 and ck = ak−1 > 0, player i is active both at

b(a) and c(a). Hence,

U(b(a))− U(c(a)) =
∑
l≤j−1

rl(U(b(a)− l)− U(c(a)− l))

+ rj(U(b(a)− j)− U(c(a)− (j + 1))) +
∑

j+1≤l≤k−2

rl(U(b(a)− l)− U(c(a)− (l + 1)))

+ rk−1(U(b(a)− (k − 1))− U(c2(a)− k)) +
∑
l≥k

rl(U(b(a)− (l + 1))− U(c(a)− (l + 1)).

Now, observe that for l ≤ j − 1, b(a) − l = b(a−l) and c(a) − l = c(a−l). We

also have b(a − j) = b2(a) and c(a − (j + 1)) = c2(a). For j + 1 ≤ j ≤ k − 2,

b(a − l) = b(a−l) and c(a − (l + 1)) = c(a−l). We have b(a − (k − 1) = b1(a) and

c(a−k) = c1(a). Finally, for l ≥ k, b(a−(l+1)) = b(a−l) and c(a)−(l+1) = c(a−l).

52

Hence,

U(b(a))− U(c(a)) =
∑
l≤j−1

rl(U(b(a−l))− U(c(a−l)))

+ rj(U(b
2(a))− U(c2(a))) +

∑
j+1≤l≤k−2

rl(U(b(a−l))− U(c(a−l)))

+ rk−1(U(b
1(a))− U(c1(a))) +

∑
l≥k

rl(U(b(a−l))− U(c(a−l))).

Now, by Submodularity, when j < k − 1, g(j, j + 1, ..,m) − g(j + 1, ...,m) ≤

g(k−1, ...,m)−g(k, ...,m), so rj ≤ rk−1. We also recall, by Step 2, that U(b1(a))−

U(c1(a)) > 0. This implies:

U(b(a))−U(c(a)) ≥
∑

l ̸=j,k−1

rl(U(b(a−l))−U(c(a−l)))+rj(U(b
1(a)−U(c1(a)+U(b2(a))−U(c2(a))).

By Step 2, U(b1(a)−U(c1(a)+U(b2(a))−U(c2(a)) ≥ 0. By the inductive hypoth-

esis, U(b(a−l))− U(c(a−l)) ≥ 0, so that

U(b(a))− U(c(a)),

establishing Step 3 and completing the proof of the Theorem. ■

Proof of Proposition 1:

Suppose that the condition holds. Then, whenever m = 2, the optimal policy

of the planner and the MPE of the workers’ game both have workers who can work

on both targets work on the target with the highest exogenous rank.

Suppose that, whenever there are m−1 tasks left, all workers who can work on

any subset of tasks work on the task with the highest index. If the condition of the

Proposition is satisfied, for any task j = 1, ..,m, the expected number of workers

who can work on task j is the same, so that the expected time of completion

and expected value of a worker are the same whenever any task is completed,

V (H − j) = V (H − k) and U(H − j) = U(H − k) for all j, k. This implies that

both the planner and the workers are indifferent among all tasks when there are

m tasks left.

53

Next, we suppose that the condition of the Proposition is not satisfied, and we

show that there exists one state at which the choices of the planner and of one

agent are different.

If there exist two tasks j and k such that aj ̸= ak, a direct application of

Lemmas 2 and 4 shows that the equilibrium strategy of a worker who can work

on both tasks (who must exist because the graph is connected) differs from the

optimal policy of the planner.

So we next suppose that aj = ak for all j, k but that there are two collections

of sets {A1, ..., Ak} and {B1, .., Bk} such that | ∩k
j=1 Aj| ̸= | ∩k

j=1 Bj|. Pick the

smallest value of k for which these collections of sets exist.

First notice that, if | ∩k
i=1Aj| ≠ | ∩k

i=1Bj|, then there must exist two collections

of k sets which only differ in one set {A1, ...Ak−1, Ak} and {A1, ..., Ak−1, Al} such

that |∩k
j=1Aj| ≠ |∩k−1

j=1Aj∩Al|. Otherwise, all collections of k sets would necessarily

have an intersection of the same cardinal, as any collection of k sets can be obtained

from another collection of k sets by permuting one set at a time. Without loss of

generality, suppose that | ∩k
j=1 Aj| < | ∩k−1

j=1 Aj ∩ Al|

Now consider the planner’s problem when there are k + 1 remaining tasks

i = 1, .., k − 1, k, l. Suppose first that there exists one worker i who can work

on tasks k and l, Ak ∩ Al ̸= ∅. Notice that, after any task is completed, all

remaining tasks are symmetric (in the sense that all intersections of Ai have the

same cardinal) so that

V (−k) = − 1

| ∪ j = 1kAj|
+ V (−k, j),

V (−l) = − 1

| ∪ j = 1k−1Aj ∪ Al|
+ V (−l, j)

where V (−k, j) = V (−l, j) is the value of the planner after any pair of tasks has

been completed. Now recall that

| ∪k
j=1 Aj| =

k∑
j=1

(−1)j+1
∑

1≤i1<..<ij≤k

|Ai1 ∩ .. ∩ Aij |.

54

and because all intersections of less than k sets in A have the same cardinal:

| ∪k
j=1 Aj| − | ∪k−1

j=1 Aj ∪ Al| = (−1)k+1(| ∩k
j=1 Aj| − | ∩k−1

j=1 Aj ∩ Al|).

We deduce that, when k is odd, | ∪k
j=1 Aj| < | ∪k−1

j=1 Aj ∪ Al| and V (−k) < V (−l),

whereas when k is even | ∪k
j=1 Aj| > | ∪k−1

j=1 Aj ∪ Al| and V(− k) > V (−l).

Next observe that, in the decentralized model, worker i computes her expected

utilities after tasks k and l are completed as

U(−k) = +
1

| ∪k
j=1 Aj|

+ U(−k, j),

U(−l) = +
1

λ| ∪k−1
j=1 Aj ∪ Al|

+ U(−k, j),

where we use the fact that U(−k, j) = U(−l, j) for all k, l, j. Using the same

reasoning as for the planner, U(−k) > U(−l) if k is odd and U(−k) < U(−l) if

k is even. Hence, the rankings of the planner and worker i between the two tasks

are different.

Next suppose that Ak ∩ Al = ∅. Because the suitability graph is connected,

there exists j such that Ak ∩ Aj ̸= ∅. This implies that for k = 2, there exist two

collections of sets such that |Ak ∩ Al| = 0 ̸= |Ak ∩ Aj|.

Now, there must exist two tasks j, j′ such that Ak ∩ Aj ̸= ∅, Aj ∩ Aj′ ̸= ∅ and

Ak ∩Aj′ = ∅. To see this, note that, because the graph is connected, there exists a

chain of elements connecting Ak and Al, i1 = k, ..., iK = l such that Aij ∩Aij+1
̸= ∅.

But now, pick the smallest j such that Ai1 ∩ Aij = ∅. Then Ai1 ∩ Aij−1
̸= ∅, and

hence we have found three sets Ai1 , Aij−1
and Aij with the desired property.

Consider the set of tasks k, j, j′ and a worker who can work both on tasks i

and j. We compute the planner’s payoff

V (−k) = − 1

|Aj ∪ Aj′ |
+ V (−k, l),

V (−j) = − 1

|Ak ∪ Aj′|
+ V (−j, l)

Because all sets Ak have the same cardinal, V (−k, l) = V (−j, l) for all l and, as

55

Aj ∩ Aj′ ̸= ∅ and Ak ∩ Aj′ = ∅, |Aj ∪ Aj′| < |Ak ∪ Aj′ |, so that V (−k) < V (−j)

and the planner strictly prefers to assign a worker to task j.

Similarly, we compute the expected payoff of an worker i who can work on both

tasks as

U(−k) = +
1

|Aj ∪ Aj′ |
+ U(−k, l),

U(−j) = +
1

|Ak ∪ Aj′|
+ U(−j, l)

and find that the worker strictly prefers to work on task k, so that the planner and

the worker have different incentives. ■

Proof of Proposition 4: We compute

ETw
ETp

=
n(b2 + b12) + (b1 + b12)

2

n(b1 + b12) + (b2 + b12)2

=
(β2 + β12) + (β1 + β12)

2

(β1 + β12) + (β2 + β12)2

=
(1− β1) + (1− β2)

2

(1− β2) + (1− β1)2

Relabelling α1 = 1− β1, α2 = 1− β2, we solve the problem:

max
α1,α2 0≤α1≤α2≤1,1−α1≤α2

h(α1, α2) ≡
α1 + α2

2

α2 + α2
1

We first show that, for α2 ≥ max{α1, 1− α1}, ∂h
∂α2

> 0. By direct computation we

obtain

sign
∂h

∂α2

= sign α2
2 + 2α2α

2
1 − α1

Now, given that α2 ≥ 0, α2
2 + 2α2α

2
1 − α1 > 0 if and only if

α2 > −α2
1 +

√
α4
1 + α1

56

If α1 >
1
2
, then α2 ≥ α1 > 1− α1. We easily check that for α1 >

1
2
,

α1 > −α2
1 +

√
α4
1 + α1

establishing the result. If now α1 <
1
2
then α2 ≥ 1− α1 > α1, and we easily check

that for α1 <
1
2
,

1− α1 > −α2
1 +

√
α4
1 + α1

establishing the result. As ∂h
∂α2

> 0, the optimal solution satisfies α2 = 1 (or

β2 = 0), so that there is no worker who can only work on task 2. Now focusing on

the workers who can work on task 1, we compute, when α2 = 1,

∂h

∂α1

= −α2
1 − 2α1 + 1 = 0,

resulting in the value α∗
1 =

√
2 − 1 so that the maximal value of h is given by

β1 = 2−
√
2, β12 =

√
2− 1 and the value

h(α∗
1, α

∗
2) =

√
2

4− 2
√
2
=

1

2(
√
2− 1)

.

■

Proof of Proposition 5: Let (a1, ..., am−1, n) denote the number of agents who

can work on tasks 1, 2, ..m − 1,m in the ranked task model. As the ranked task

model satisfies the conditions of Theorems 2, we know that

ETw =
1

n
+

1

am−1

+ ...+
1

a1

In particular, as 1
a1

≥ 1
ak

for all k > 1

ETw ≤ 1

n
+
m− 1

a1

which is the expected time of completion of all tasks for the vector (a1, ..., a1,m)

57

Next, by the proof of Theorem 1, the expected time of completion is decreasing

in the number of workers who can accomplish any task. Hence, the expected time

of completion for the vector (a1, ..., am−1, n) is greater than the expected time of

completion for the vector (a1, n, ..., n). Hence

PA ≤ max
a≤n

ETw(a, ..., a, n)

ETp(a, n, ..., n)

Now we compute

ETw(a, ..., a, n) =
1

n
+
m− 1

a
,

and

ETp(a, n, ..., n) =
m− 1

n
+

1

a
[1− a

n
]m−1 +

1

n
[1− (1− a

n
)m−1].

To obtain the preceding formula, note that the only situation where the number of

active workers is smaller than n is when tasks a2, ..., am are completed before task

a1, which happens with probability [1− a
n
]m−1. In that case, the expected time of

completion is equal to m−1
n

+ 1
a
. For any other realization, the expected time of

completion is m
n
.

Now, let α = a
n
denote the fraction of workers who can accomplish tasks 1, ..m−

1 when n grows large. We then have

ETw(a, ..., a, n)

ETp(a, n, ..., n)
=

m− 1 + α

αm+ (1− α)m

concluding the proof of the Proposition. ■

Proof of Proposition 2 Suppose that there is no exclusive task. The proof is

by induction on the number of remaining tasks. Consider first the workers’ game

when there are two tasks left. For any j, k with i < j, the condition guaranteeing

that workers choose task j is:

ρj +
ρk
ak

≥ ρk +
ρj
aj
,

58

yielding

ρj ≥ ρk
aj(ak − 1)

ak(aj − 1)

As long as this condition is satisfied is satisfied for all pairs (j, k), the workers will

choose the planner’s optimal task allocation.

Now suppose that there are t(G) remaining tasks. We first show the following

lemma.

Lemma 9 For any agent i, any task j, any suitability graph G− j

0 ≤ Ui(G− j) ≤
∑

k∈Hi,k ̸=j

αk
i (G)ρk

where 0 < αk
i < 1.

Proof of the Lemma: Consider a task k. Because the suitability graph G − j

has t(G) − 1 tasks left, by the inductive hypothesis, all workers work on the task

with the smallest number of workers in G − j. Pick a task k ∈ Hi. We want to

compute the probability that worker i does not get the reward associated to task

k ∈ Hi,

πk
i = Pr(idoesnotcompletekfirst))

Let σ be a sequence of completed tasks, i.e., a permutation over the set of tasks

T (G− j). We have

πk
i =

∑
σ

Pr(idoesnotcompletekfirst, thesequenceofcompletedtasksisgivenbyσ)

Now consider the set of sequences Σ0 such that task k is completed exactly after

all tasks of rank lower than k are completed. We have

πk
i ≥

∑
σ∈Σ0

Pr(idoesnotcompletekfirst, thesequenceofcompletedtasksisgivenbyσ)

Now, when task k is completed exactly after all tasks of rank lower than k have

been completed, by the induction hypothesis there are exactly ak workers working

59

on task k, so that the probability that an agent other than k completes the task

first is equal to ak−1
ak

∈ (0, 1). We thus have

πk
i ≥

∑
σ∈Σ0

ak − 1

ak

∑
σ∈Σ0

= Pr[σ ∈ Σ0]
ak − 1

ak

where the last equality stems from the fact that the two events that i completes

k first and the sequence is given by σ are independent. Now let αk
i = 1 − Pr[σ ∈

Σ0]
ak−1
ak

. Clearly, 0 < αk
i < 1 and the probability that i receives reward k is

bounded above by αk
i , establishing the Lemma. ■

Next to prove the existence of differential rewards, we will fix the ratio
ρj
ρk

= Rjk

for all pairs of tasks (j, k). Notice that the ratios have been constructed for m = 2.

Now so suppose that the ratios have already been constructed for set of tasks of

cardinality smaller than t and let Rjk = maxG t(g)≤tR
G
jk.

Consider a suitability graph G with t tasks. Hence, for any set of tasks smaller

than T (G), all workers choose the optimal task allocation of the planner. Consider

a worker i for whom j is the smallest index task in Hi, i.e., k > j∀j ∈ Hi, j ̸= k.

Worker j prefers to work on j if and only if we have:

ρj + Ui(G− j) ≥ ρk + Ui(G− k)

for all k ̸= j. By Lemma 9 Ui(G− j) > 0 and Ui(G− k) ≤ ajiρj +
∑

l>j,l ̸=k a
l
iρl so

that a sufficient condition for the worker to prefer to work on j is

ρj(1− aji) ≥ ρk +
∑

l>j,l ̸=k

aliρl

Now consider aj = maxi a
j, we have a sufficient condition:

ρj(1− aj) ≥ ρk +
∑

l>j,l ̸=k

alρl

60

This gives a recursive formula. For the two tasks with the highest index, we

obtain

RG
jk =

1

1− aj
> 1

So ρj > ρk for all j < k, and we can construct recursively a ratio

RG
jk =

1 +
∑

l>j,l ̸=k a
lRG

lk

1− aj
> 1

Whenever
ρj
ρk
> RG

jk, worker i prefers to work on task j than on task k, estab-

lishing the result.

To show that non-exclusivity is a necessary condition, suppose that there is

one task j that a single agent can complete. Then, whenever there are two tasks

j and k left, there does not exist a finite ration Rjk such that worker i prefers to

work on j when
ρj
ρk
> Rjk. ■

Proof of Proposition 3: When m = 3, we need to distinguish between two types

of agents: (i) agents who can work on tasks t2 and t3 and (ii) agents who can work

on all tasks. For agents who can work on tasks t2 and t3, the condition reads:

ρ2 + U(13) ≥ ρ3 + U(12)

where U ′(13) and U ′(12) denote the continuation values after tasks 2 and 3 are

completed. Now

U ′(13) =
ρ3
a3

+
(a3 − a1)

a3

ρ3
a3

U ′(12) =
ρ2
a2

+
(a2 − a1)

a2

ρ2
a2

giving the condition:

ρ2 ≥ ρ3
a22(a

2
3 + 2a3 − a1)

a23(a
2
2 + 2a2 − a1)

For agents who can work on both tasks, we note that they prefer to work on task

61

t1 than task t2 if

ρ1 + U(23) ≥ ρ2 + U(13)

and on task t2 rather than t3 if

ρ2 + U(13) ≥ ρ3 + U(12)

where U(23), U(13) and U(12) denote the continuation values after tasks t1 t2 and

t3 are completed. We compute

U(23) =
ρ2
a2

+
a2ρ3
a23

,

U(13) =
ρ1
a1

+
a1ρ3
ρ23

,

U(12) =
ρ1
a1

+
a1ρ2
a22

We finally observe that the condition: ρ2 ≥ ρ3
a22(a

2
3+2a3−a1)

a23(a
2
2+2a2−a1)

is sufficient to show

that the worker prefers to work on task t2 than task t3 and that the condition:

ρ1 ≥ ρ2
a1(a2−1)
a2(a1−1)

is sufficient to show that the worker prefers to work on task t1 than

task t2. ■

9 Appendix B: The three-task model

Unfortunately, Lemma 2 cannot be generalized to more than two tasks. We

use the case of three tasks to point out the new considerations that emerge when

there are more than two tasks to complete.

First, Lemma 10 shows that in the case of three tasks, if all workers that can

complete the “hardest” task can either complete all tasks or only the “hardest”

task, then the planner should follow the principle demonstrated in Lemma 2 by

postponing the “easier” tasks as much as possible.

Lemma 10 Suppose that there are three tasks, T = {1, 2, 3}. Suppose that A1 ∩

A3 ⊆ A2 and A2 ∩A3 ⊆ A1. If a1 > a2 > a3, optimally, the planner should prefer,

for each worker and in each phase, assignment to task 3 over assignments to tasks

62

1

2

3

4

5

6

7

8

10

11

12

13

14

I

II

III

(a) A1 ∩A3 ⊆ A2, A2 ∩A3 ⊆ A1

and a1 > a2 > a3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I

II

III

(b) A2 ∩A3 ⊆ A1 and a1 > a2 >
a3, but not A1 ∩A3 ⊆ A2.

Figure 4: Two examples using 13\14 agents and three tasks. In both, agents 1
and 2 work only on task I, agents 3-7 work on tasks I and II, agent 8 works on
all tasks, agent 10 works only on task II and agents 11-14 work only on task III.
Agent 9, added in the right-hand-side graph works on tasks I and III.

1 and 2 and assignment to task 2 over assignment to task 1.

The graph in Figure 4a satisfies Lemma 10 since the agents that can work on the

hardest task (task III) can either work only on this task or can work on all tasks.

Therefore the planner prefers, for each agent and in each phase, assignment to task

III over assignments to tasks I and II and assignment to task II over assignment

63

to task I.21

Agent 9, added in Figure 4b, can work on both task I (the “easiest” task)

and task III (the “hardest” task), violating the conditions of Lemma 10, without

changing the order of difficulty. It turns out that in this case, increasing the

probability of having agent 9 available in the final phase, by completing task II

first, is more worthwhile than completing the “hardest” task (task III) first and

jeopardizing the availability of agent 9 in the final phase.22 Interestingly, in this

case, the planner’s preferences may change across phases. In phase 1, the planner

prefers assignments to task II over assignments to task III (and task I). Therefore,

agent 8 is optimally assigned to task II. If task I is completed first, by Lemma 2,

the planner prefers assignments to task III over assignments to task II. Therefore,

the planner will re-assign agent 8 from task II to task III although task II was not

completed.

Proof of Lemma 10: Denote by XS = {wi|Hi = S} the set of workers that are

able to complete each task in S and are not able to complete tasks that are not in

S. Denote by xS the cardinality of XS.

Note that A1 ∩ A3 ⊆ A2 implies that X13 = ∅ and that A2 ∩ A3 ⊆ A1 implies

that X23 = ∅. Also note that a1 > a2 > a3 implies x1 > x2 and x2+x12 > x3 since

a1 = x1 + x12 + x13 + x123 = x1 + x12 + x123

a2 = x2 + x12 + x23 + x123 = x2 + x12 + x123

21If task I is completed first, by Lemma 2, in phase 2, agents 3-7 and 10 inspect task II while
agents 8 and 11-14 inspect task III. The expected time of completion is 102

385 × 1
λ . If task II is

completed first, by Lemma 2, in phase 2, agents 1-7 inspect task I while agents 8 and 11-14
inspect task III. The expected time of completion is 121

480 × 1
λ . If task III is completed first, by

Lemma 2, in phase 2, agents 1 and 2 inspect task I while agents 3-8 and 10 inspect task II. The
expected time of completion is 121

504 × 1
λ . Hence, it is optimal for the planner to prefer in phase 1

assignment to task III (the “hardest” task) over assignments to tasks I and II and assignment to
task II over assignment to task I.

22If task I is completed first, by Lemma 2, in phase 2, agents 3-7 and 10 inspect task II while
agents 8, 9 and 11-14 inspect task III. The expected time of completion is 5

21 × 1
λ . If task II is

completed first, by Lemma 2, in phase 2, agents 1-7 inspect task I while agents 8, 9 and 11-14
inspect task III. The expected time of completion is 17

78 × 1
λ . If task III is completed first, by

Lemma 2, in phase 2, agents 1, 2 and 9 inspect task I while agents 3-8 and 10 inspect task II.
The expected time of completion is 139

630 × 1
λ . Hence, it is optimal for the planner to prefer in

phase 1 assignment to task II (not the “hardest” task) over assignments to tasks I and III and
assignment to task III over assignment to task I.

64

a3 = x3 + x13 + x23 + x123 = x3 + x123

We first consider the planner’s problem. Suppose that task 1 is completed first.

Then, there are x23 + x123 = x123 agents that can work on both tasks, x2 + x12

agents that can work only on task 2 and x3 + x13 = x3 agents that can work only

on task 3. The expected completion time given that task 1 was completed first, is a

sum of two parts. The first part represents the expected time it takes to complete

one of the two tasks (task 2 or task 3): 1
λ(x2+x3+x12+x123)

. The second represents

the expected time it takes to complete the final task, given that the workers that

can work on both tasks 2 and 3 are allocated in phase 2 to task 3 which is the

harder task since x2 + x12 > x3 (Lemma 2). With probability x3+x123

x2+x3+x12+x123
, task

3 is completed in the second phase, and the expected time to complete the final

task, task 2, is 1
λ(x2+x12+x123)

. With probability x2+x12

x2+x3+x12+x123
, task 2 is completed

in the second phase and the expected time to complete the final task, task 3, is

1
λ(x3+x123)

. Thus, the expected time to complete task 2 and task 3 is

1

λ(x2 + x3 + x12 + x123)

[
1 +

x3 + x123
x2 + x12 + x123

+
x2 + x12
x3 + x123

]
=

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x2 + x3 + x12 + x123)(x2 + x12 + x123)

]
Now, suppose that task 2 is completed first. Then, there are x13 + x123 = x123

agents that can work on both tasks, x1 + x12 agents that can work only on task 1

and x3 + x23 = x3 agents that can work only on task 3. The expected completion

time given that task 2 was completed first, is a sum of two parts. The first part

represents the expected time it takes to complete one of the two tasks (task 1

or task 3): 1
λ(x1+x3+x12+x123)

. The second represents the expected time it takes to

complete the final task, given that the workers that can work on both tasks 1 and

3 are allocated in phase 2 to task 3 which is the “harder” task since x1 + x12 > x3

(Lemma 2). With probability x3+x123

x1+x3+x12+x123
, task 3 is completed in the second

phase, and the expected time to complete the final task, task 1, is 1
λ(x1+x12+x123)

.

With probability x1+x12

x1+x3+x12+x123
, task 2 is completed in the second phase and the

65

expected time to complete the final task, task 3, is 1
λ(x3+x123)

. Thus, the expected

time to complete task 1 and task 3 is

1

λ(x1 + x3 + x12 + x123)

[
1 +

x3 + x123
x1 + x12 + x123

+
x1 + x12
x3 + x123

]
=

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
Finally, suppose that task 3 is completed first. Then, there are x12 + x123

agents that can work on both tasks, x1 + x13 = x1 agents that can work only on

task 1 and x2 + x23 = x2 agents that can work only on task 2. The expected

completion time given that task 3 was completed first, is a sum of two parts. The

first part represents the expected time that it takes to complete one of the two

tasks (task 1 or task 2): 1
λ(x1+x2+x12+x123)

. The second represents the expected

time it takes to complete the final task, given that the workers that can work on

both tasks 1 and 2 are allocated in phase 2 to task 2 which is the “harder” task

since x1 > x2 (Lemma 2). With probability x2+x12+x123

x1+x2+x12+x123
, task 2 is completed

in the second phase, and the expected time to complete the final task, task 1, is

1
λ(x1+x12+x123)

. With probability x1

x1+x2+x12+x123
, task 1 is completed in the second

phase and the expected time to complete the final task, task 2, is 1
λ(x2+x12+x123)

.

Thus, the expected time to complete task 1 and task 2 is

1

λ(x1 + x2 + x12 + x123)

[
1 +

x2 + x12 + x123
x1 + x12 + x123

+
x1

x2 + x12 + x123

]
=

1

λ

[
1

(x2 + x12 + x123)
+

x2 + x12 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
Comparing the three expected times expressions for the final two phases, it is

clear that

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x2 + x3 + x12 + x123)(x2 + x12 + x123)

]
>

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]

66

That is, the expected time it takes to complete the final two phases is longer if

task 1 is completed first than if task 2 is completed first.

Also,

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
>

1

λ

[
1

(x2 + x12 + x123)
+

x2 + x12 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
since

x2 + x12 − x3
(x3 + x123)(x2 + x12 + x123)

>
x2 + x12 − x3

(x1 + x3 + x12 + x123)(x1 + x12 + x123)

That is, the expected time it takes to complete the final two phases is longer if

task 2 is completed first than if task 3 is completed first.

Therefore, since the planner wishes to complete the three tasks as fast as pos-

sible, he should prefer, for each worker in phase 1, assignment to task 3 over

assignments to tasks 1 and 2 and assignment to task 2 over assignment to task 1.

By Lemma 2 this is true also for phase 2 and it is trivially true for phase 3 since

there is only one task left.

We now move to the workers’ game, focusing on the non-trivial optimal strate-

gies of the agents that can perform all tasks and on the agents that can perform

task 1 and task 2. We solve the game backwards based on Lemma 2.

Suppose that task 1 is completed first. Then, there are x23+x123 = x123 agents

that can work on both tasks, x2 + x12 agents that can work only on task 2 and

x3 + x13 = x3 agents that can work only on task 3. That is, the probability to

be the winner of phase 2 is 1
x2+x3+x12+x123

. By Lemma 2, the probability that task

2 (the easier task, since x2 + x12 > x3) is completed in phase 2 is x2+x12+x123

x2+x3+x12+x123

while the probability that task 3 is the completed task in phase 2 is x3

x2+x3+x12+x123
.

If task 2 was the one completed in phase 2 the probability of winning phase 3 is

1
x3+x123

. If task 3 was the one completed in phase 2 the probability of winning

phase 3 is 1
x2+x12+x123

. Therefore, the expected number of completions of agents

67

that can perform all tasks is

1

x2 + x3 + x12 + x123
+

x2 + x12 + x123
x2 + x3 + x12 + x123

× 1

x3 + x123
+

x3
x2 + x3 + x12 + x123

× 1

x2 + x12 + x123
=

1

x2 + x3 + x12 + x123

[
1 +

x2 + x12 + x123
x3 + x123

+
x3

x2 + x12 + x123

]
=

1

x2 + x12 + x123
+

x2 + x12 + x123
(x3 + x123)(x2 + x3 + x12 + x123)

The expected number of completions of agents that can perform task 1 and task

2.

1

x2 + x3 + x12 + x123
+

x2 + x12 + x123
x2 + x3 + x12 + x123

×0+
x3

x2 + x3 + x12 + x123
× 1

x2 + x12 + x123
=

1

x2 + x3 + x12 + x123

[
1 +

x3
x2 + x12 + x123

]
=

1

x2 + x12 + x123

Suppose that task 2 is completed first. Then, there are x13 + x123 = x123 agents

that can work on both tasks, x1 + x12 agents that can work only on task 1 and

x3 + x23 = x3 agents that can work only on task 3. That is, the probability to

be the winner of phase 2 is 1
x1+x3+x12+x123

. By Lemma 2, the probability that task

1 (the easier task, since x1 + x12 > x3) is completed in phase 2 is x1+x12+x123

x1+x3+x12+x123

while the probability that task 3 is the completed task in phase 2 is x3

x1+x3+x12+x123
.

If task 1 was the one completed in phase 2 the probability of winning phase 3 is

1
x3+x123

. If task 3 is the one completed in phase 2 the probability of winning phase

3 is 1
x1+x12+x123

. Therefore, the expected number of completions of agents that can

perform all tasks is

1

x1 + x3 + x12 + x123
+

x1 + x12 + x123
x1 + x3 + x12 + x123

× 1

x3 + x123
+

x3
x1 + x3 + x12 + x123

× 1

x1 + x12 + x123
=

1

x1 + x3 + x12 + x123

[
1 +

x1 + x12 + x123
x3 + x123

+
x3

x1 + x12 + x123

]
=

1

x1 + x12 + x123
+

x1 + x12 + x123
(x3 + x123)(x1 + x3 + x12 + x123)

The expected number of completions of agents that can perform task 1 and task

68

2.

1

x1 + x3 + x12 + x123
+

x1 + x12 + x123
x1 + x3 + x12 + x123

×0+
x3

x1 + x3 + x12 + x123
× 1

x1 + x12 + x123
=

Suppose that task 3 is completed first. Then, there are x12 + x123 agents that can

work on both tasks, x1 agents that can work only on task 1 and x2 agents that

can work only on task 2. That is, the probability to be the winner of phase 2 is

1
x1+x2+x12+x123

. By Lemma 2, the probability that task 1 (the easier task, since

x1 > x2) is completed in phase 2 is x1+x12+x123

x1+x2+x12+x123
while the probability that task 2

is the completed task in phase 2 is x2

x1+x2+x12+x123
. If task 1 was the one completed

in phase 2 the probability of winning phase 3 is 1
x2+x12+x123

. If task 2 is the one

completed in phase 2 the probability of winning phase 3 is 1
x1+x12+x123

. Therefore,

the expected number of completions of agents that can perform all tasks is

1

x1 + x2 + x12 + x123
+

x1 + x12 + x123
x1 + x2 + x12 + x123

× 1

x2 + x12 + x123
+

x2
x1 + x2 + x12 + x123

× 1

x1 + x12 + x123
=

1

x1 + x2 + x12 + x123

[
1 +

x1 + x12 + x123
x2 + x12 + x123

+
x2

x1 + x12 + x123

]
=

1

x1 + x12 + x123
+

x1 + x12 + x123
(x2 + x12 + x123)(x1 + x2 + x12 + x123)

Since x1 > x2 we get that 1
x2+x12+x123

> 1
x1+x12+x123

. This means that agents

that can perform task 1 and task 2 (but not task 3) have a higher expected number

of completions if task 1 is completed in phase 1 compared to the case where task

2 is completed in phase 1. Since they cannot affect their winning probability in

phase 1 and the probability that task 3 is completed in phase 1, it is optimal for

these agents to engage with the easier task (task 1) in phase 1.

To prove that for agents that can perform all tasks there is a higher expected

number of completions if task 1 is completed in phase 1 compared to the case

69

where task 2 is completed in phase 1 we show that the difference is positive:

[
1

x2 + x12 + x123
+

x2 + x12 + x123
(x3 + x123)(x2 + x3 + x12 + x123)

]
−

[
1

x2 + x12 + x123
− 1

x1 + x12 + x123

]
+

1

x3 + x123

[
x2 + x12 + x123

x2 + x3 + x12 + x123
− x1 + x12 + x123
x1 + x3 + x12 + x123

]
=

[
x1 − x2

(x2 + x12 + x123)(x1 + x12 + x123)

]
+

1

x3 + x123

[
(1− x3

x2 + x3 + x12 + x123
)−(1− x3

x1 + x3 + x12 + x123
)

]
=

[
x1 − x2

(x2 + x12 + x123)(x1 + x12 + x123)

]
+

x3
x3 + x123

[
1

x1 + x3 + x12 + x123
− 1

x2 + x3 + x12 + x123

]
=

[
x1 − x2

(x2 + x12 + x123)(x1 + x12 + x123)

]
− x3
x3 + x123

[
x1 − x2

(x1 + x3 + x12 + x123)(x2 + x3 + x12 + x123)

]
=

(x1−x2)
[

1

(x2 + x12 + x123)(x1 + x12 + x123)
− 1

(1 + x123

x3
)(x1 + x3 + x12 + x123)(x2 + x3 + x12 + x123)

]
Since x1 > x2 and since the xss are non-negative this difference is positive.

Finally, to prove that for agents that can perform all tasks there is a higher

expected number of completions if task 1 is completed in phase 1 compared to the

case where task 3 is completed in phase 1 we show that the difference is positive:

[
1

x2 + x12 + x123
+

x2 + x12 + x123
(x3 + x123)(x2 + x3 + x12 + x123)

]
−
[

1

x1 + x12 + x123
+

x1 + x12 + x123
(x2 + x12 + x123)(x1 + x2 + x12 + x123)

]
=

[
1

x2 + x12 + x123
− 1

x1 + x12 + x123

]
+

1

x3 + x123

[
1− x3

x2 + x3 + x12 + x123

]
− 1

x2 + x12 + x123

[
1− x2

x1 + x2 + x12 + x123

]
=

[
1

x2 + x12 + x123
− 1

x1 + x12 + x123

]
+

[
1

x3 + x123
− 1

x2 + x12 + x123

]
+

+
x2

(x2 + x12 + x123)(x1 + x2 + x12 + x123)
− x3

(x3 + x123)(x2 + x3 + x12 + x123)
=

1

x1 + x12 + x123
+

x1 + x12 + x123
(x2 + x12 + x123)(x1 + x2 + x12 + x123)

Comparing the three expected times expressions for the final two phases, it is clear

that
1

λ

[
1

(x3 + x123)
+

x3 + x123
(x2 + x3 + x12 + x123)(x2 + x12 + x123)

]
>

70

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
That is, the expected time it takes to complete the final two phases is longer if

task 1 is completed first than if task 2 is completed first.

Also,

1

λ

[
1

(x3 + x123)
+

x3 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
>

1

λ

[
1

(x2 + x12 + x123)
+

x2 + x12 + x123
(x1 + x3 + x12 + x123)(x1 + x12 + x123)

]
since

x2 + x12 − x3
(x3 + x123)(x2 + x12 + x123)

>
x2 + x12 − x3

(x1 + x3 + x12 + x123)(x1 + x12 + x123)

That is, the expected time it takes to complete the final two phases is longer if

task 2 is completed first than if task 3 is completed first.

Therefore, since the planner wishes to complete the three tasks as fast as pos-

sible, he should prefer assignment to task 3 over assignments to tasks 1 and 2 and

assignment to task 2 over assignment to task 1. By Lemma 2 this is true also for

phase 2 and it is true for phase 3 since there is only one task left. ■

71

